Preface |
|
xv | |
|
|
xvii | |
|
1 Electronic Process in Organic Solids |
|
|
1 | (42) |
|
|
|
|
1 | (2) |
|
1.2 Structure Characteristics and Properties of Organic Solids |
|
|
3 | (5) |
|
|
4 | (3) |
|
1.2.2 Molecular Geometries |
|
|
7 | (1) |
|
1.2.3 Aggregations and Assemblies |
|
|
7 | (1) |
|
1.3 Electronic Processes in Organic Small Molecules |
|
|
8 | (14) |
|
1.3.1 Photophysics of Small Molecules |
|
|
8 | (1) |
|
1.3.1.1 Molecular Orbital Model |
|
|
8 | (1) |
|
1.3.1.2 Jablonski Diagram |
|
|
9 | (1) |
|
1.3.1.3 Frank-Condon Principle |
|
|
10 | (1) |
|
1.3.1.4 Electronic Absorption |
|
|
11 | (2) |
|
1.3.1.5 Fluorescence and Phosphorescence |
|
|
13 | (2) |
|
1.3.2 Excitation for Charge and Energy Transfer in Small Molecules |
|
|
15 | (1) |
|
1.3.2.1 Photoinduced Electron Transfer |
|
|
15 | (3) |
|
1.3.2.2 Excitation Energy Transfer |
|
|
18 | (4) |
|
1.4 Some Basic Concepts of Electronic Process in Conjugated Polymers |
|
|
22 | (13) |
|
1.4.1 Excited States in Conjugated Polymers |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
27 | (3) |
|
1.4.2 Interactions between Conjugated Polymer Chains |
|
|
30 | (1) |
|
1.4.2.1 Bound Polaron Pairs |
|
|
30 | (1) |
|
|
31 | (1) |
|
1.4.2.3 Ground-State Complexes |
|
|
32 | (1) |
|
1.4.3 Photoinduced Charge Transfer between Conjugated Polymers and Electron Acceptors |
|
|
32 | (3) |
|
1.5 Carriers Generation and Transport |
|
|
35 | (8) |
|
|
35 | (1) |
|
1.5.2 Carrier Mobility and Its Measurement |
|
|
36 | (1) |
|
1.5.3 Mobility-Influencing Factors |
|
|
37 | (1) |
|
|
38 | (5) |
|
2 Organic/Polymeric Semiconductors for Field-Effect Transistors |
|
|
43 | (52) |
|
|
|
|
|
43 | (4) |
|
2.1.1 Features of Organic/Polymeric Semiconductors |
|
|
44 | (1) |
|
2.1.2 Classification of Semiconductors for Organic Field-Effect Transistors |
|
|
44 | (2) |
|
2.1.3 Main Parameters for the Characterization of Organic/Polymeric Semiconductors |
|
|
46 | (1) |
|
2.2 Small-Molecular Semiconductors |
|
|
47 | (24) |
|
2.2.1 P-type Small-Molecular Semiconductors |
|
|
47 | (1) |
|
2.2.1.1 Polycyclic Aromatic Hydrocarbons |
|
|
47 | (6) |
|
2.2.1.2 Chalcogen-Containing Semiconductors |
|
|
53 | (10) |
|
2.2.1.3 Nitrogen-Containing Semiconductors |
|
|
63 | (2) |
|
2.2.2 n-Type Small-Molecule Semiconductors |
|
|
65 | (1) |
|
2.2.2.1 Fluorine-Containing Semiconductors |
|
|
65 | (2) |
|
2.2.2.2 Cyano-Containing Semiconductors |
|
|
67 | (1) |
|
2.2.2.3 Carbonyl and Imide Semiconductors |
|
|
68 | (2) |
|
|
70 | (1) |
|
2.3 Polymer Semiconductors |
|
|
71 | (5) |
|
2.3.1 p-Type Polymer Semiconductors |
|
|
72 | (1) |
|
|
72 | (1) |
|
2.3.1.2 Thiophene-Heteroacene Copolymers |
|
|
73 | (1) |
|
|
74 | (1) |
|
2.3.2 n-Type Polymer Semiconductors |
|
|
75 | (1) |
|
2.4 Normal Synthetic Methods for Organic Semiconductors |
|
|
76 | (4) |
|
2.4.1 Diels-Alder Cycloaddition |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
78 | (1) |
|
2.4.5 Sonogashira Crosscoupling |
|
|
79 | (1) |
|
|
79 | (1) |
|
|
79 | (1) |
|
2.5 Purification of Organic Semiconductors |
|
|
80 | (1) |
|
|
81 | (14) |
|
|
81 | (14) |
|
3 Organic/Polymeric Field-Effect Transistors |
|
|
95 | (76) |
|
|
|
|
|
95 | (6) |
|
3.1.1 Configurations of Organic Field-Effect Transistors |
|
|
96 | (1) |
|
3.1.2 Working Principle of Organic Field-Effect Transistors |
|
|
97 | (4) |
|
3.2 Carriers Transport in Organic Field-Effect Transistors |
|
|
101 | (8) |
|
3.2.1 Molecular Arrangement in Organic Semiconductors |
|
|
101 | (3) |
|
3.2.2 Charge Transport Models in Organic Semiconductors |
|
|
104 | (4) |
|
3.2.3 Factors Influencing Charge Transport in the Conducting Channel of Organic Transistors |
|
|
108 | (1) |
|
3.3 Electrodes, Insulators, and Interfaces of Organic Field-Effect Transistors |
|
|
109 | (12) |
|
|
109 | (4) |
|
|
113 | (1) |
|
|
113 | (1) |
|
|
114 | (2) |
|
3.3.2.3 Self-Assembled Layers |
|
|
116 | (1) |
|
|
116 | (1) |
|
|
117 | (1) |
|
3.3.3.1 Energy Level Alignment |
|
|
117 | (2) |
|
3.3.3.2 Interface Compatibility |
|
|
119 | (2) |
|
3.4 Organic/Polymeric Thin Film Field-Effect Transistors |
|
|
121 | (19) |
|
3.4.1 Techniques for Thin Film Preparation |
|
|
121 | (1) |
|
3.4.2 Effect of Thin-Film Microstructure on the Performance of Transistors |
|
|
122 | (4) |
|
3.4.3 High-Performance Transistors of Small Molecules |
|
|
126 | (7) |
|
3.4.4 High-Performance Transistors of Conjugated Polymers |
|
|
133 | (2) |
|
3.4.5 New Techniques for Organic/Polymeric Thin Film Field-Effect Transistors |
|
|
135 | (1) |
|
|
135 | (2) |
|
|
137 | (3) |
|
3.5 Organic/Polymeric Single Crystal Field-Effect Transistors |
|
|
140 | (15) |
|
3.5.1 Organic/Polymeric Single Crystals |
|
|
140 | (1) |
|
3.5.2 Growth of Organic/Polymeric Crystals |
|
|
140 | (1) |
|
3.5.2.1 Vapor Process for the Growth of Organic Crystals |
|
|
140 | (2) |
|
3.5.2.2 Solution Process for the Growth of Organic/Polymeric Crystals |
|
|
142 | (2) |
|
3.5.3 Fabrication Techniques for Organic Field-Effect Transistors of Single Crystals |
|
|
144 | (1) |
|
3.5.3.1 Electrostatic-Bonding Technique |
|
|
144 | (1) |
|
3.5.3.2 Drop-Casting Technique |
|
|
144 | (2) |
|
3.5.3.3 Deposition Parylene Dielectric Technique |
|
|
146 | (1) |
|
3.5.3.4 Shadow Mask Technique |
|
|
147 | (1) |
|
3.5.3.5 Gold Layer Glue Technique |
|
|
148 | (1) |
|
3.5.4 Performance of Organic/Polymeric Single Crystals in Field-Effect Transistors |
|
|
148 | (1) |
|
3.5.4.1 Organic/Polymeric Crystals |
|
|
148 | (5) |
|
3.5.4.2 Structure-Property Relationship of Organic/Polymeric Single Crystals |
|
|
153 | (2) |
|
|
155 | (16) |
|
|
156 | (15) |
|
4 Organic Circuits and Organic Single-Molecule Transistors |
|
|
171 | (106) |
|
|
|
|
|
171 | (7) |
|
4.1.1 Ambipolar Transistors |
|
|
171 | (2) |
|
|
173 | (3) |
|
4.1.3 Ring Oscillator Circuits |
|
|
176 | (2) |
|
4.2 Circuits of Organic Thin Films |
|
|
178 | (32) |
|
4.2.1 Circuits of Organic Thin Films Based on Ambipolar Transistors |
|
|
178 | (6) |
|
4.2.2 Circuits of Organic Thin Films Based on Unipolar Transistors |
|
|
184 | (3) |
|
4.2.3 Complementary Circuits of Organic Thin Films |
|
|
187 | (5) |
|
4.2.4 Complex Circuits of Organic Thin Films |
|
|
192 | (7) |
|
4.2.5 Performance Modulation of Organic Thin-Film Circuits |
|
|
199 | (10) |
|
4.2.6 Analog Circuit Based on Organic Thin-Film Transistors |
|
|
209 | (1) |
|
4.3 Self-Assembled and Printed Organic Circuits |
|
|
210 | (6) |
|
4.3.1 Self-Assembled Organic Circuits |
|
|
210 | (3) |
|
4.3.2 Printed Organic Circuits |
|
|
213 | (3) |
|
4.4 Circuits of Organic Crystals |
|
|
216 | (5) |
|
4.5 Single-Molecule Transistors |
|
|
221 | (38) |
|
4.5.1 Fabrication of Single-Molecule Transistors |
|
|
222 | (1) |
|
4.5.1.1 Fabrication of Single-Molecule Prototype Devices |
|
|
222 | (3) |
|
4.5.1.2 Fabrication of Single-Molecule Transistors by Nanogap Electrodes |
|
|
225 | (19) |
|
4.5.2 Behavior of Single-Molecule Transistors |
|
|
244 | (1) |
|
4.5.2.1 Temperature- and Length-Variable Transport of Single Molecules |
|
|
245 | (2) |
|
4.5.2.2 Inelastic Electron Tunneling Spectroscopy of Single Molecules |
|
|
247 | (4) |
|
4.5.2.3 Transition Voltage Spectroscopy of Single Molecules |
|
|
251 | (2) |
|
4.5.3 Quanta and Theories of Single-Molecule Transistors |
|
|
253 | (6) |
|
4.6 Challenges and Outlooks |
|
|
259 | (18) |
|
|
259 | (18) |
|
5 Polymer Light-Emitting Diodes (PLEDs): Devices and Materials |
|
|
277 | (60) |
|
|
|
277 | (1) |
|
5.2 PLEDs Fabricated from Conjugated Polymers |
|
|
278 | (1) |
|
5.2.1 Device Architecture |
|
|
278 | (1) |
|
|
278 | (1) |
|
5.3 Accurate Measurement of PLED Device Parameters |
|
|
279 | (4) |
|
5.3.1 Photopic Luminosity |
|
|
279 | (2) |
|
5.3.2 Measurement of PLEDs |
|
|
281 | (2) |
|
5.4 Devices Physics of PLEDs |
|
|
283 | (13) |
|
5.4.1 Elementary Microscopic Process of PLEDs |
|
|
283 | (1) |
|
|
283 | (1) |
|
5.4.1.2 Carrier Transport |
|
|
284 | (1) |
|
5.4.1.3 Carrier Recombination |
|
|
284 | (1) |
|
|
284 | (1) |
|
5.4.1.5 Photon Extraction |
|
|
285 | (1) |
|
5.4.2 Carrier Transport in PLEDs |
|
|
285 | (1) |
|
5.4.3 Electronic Characteristic of PLEDs |
|
|
286 | (1) |
|
5.4.3.1 Current-Voltage Characteristics |
|
|
286 | (1) |
|
5.4.3.2 Space-Charge-Limited Currents |
|
|
286 | (2) |
|
5.4.3.3 Injection-Limited Currents |
|
|
288 | (1) |
|
5.4.3.4 Diffusion-Controlled Currents |
|
|
288 | (1) |
|
5.4.4 Fowler-Nordheim Tunneling in Conjugated Polymer MIM Diodes |
|
|
289 | (3) |
|
5.4.4.1 Single Carrier Devices |
|
|
292 | (1) |
|
5.4.4.2 LED Operating Voltage and Efficiency |
|
|
293 | (1) |
|
5.4.4.3 Limits of the Model |
|
|
294 | (1) |
|
5.4.5 Approaches to Improved Carrier Injection |
|
|
295 | (1) |
|
|
296 | (7) |
|
5.5.1 Conjugated Polymers for PLEDs |
|
|
296 | (1) |
|
5.5.1.1 Poly(p-phenylenevinylene)s (PPVs) |
|
|
297 | (1) |
|
5.5.1.2 Polyphenylenes (PPPs) |
|
|
297 | (1) |
|
5.5.1.3 Polyfluorenes (PFs) |
|
|
297 | (2) |
|
5.5.1.4 Polythiophenes (PTs) |
|
|
299 | (1) |
|
|
300 | (1) |
|
|
300 | (1) |
|
|
301 | (1) |
|
5.5.3 Hole-Injection/Transporting Materials |
|
|
302 | (1) |
|
5.5.3.1 Hole-Injection Materials |
|
|
302 | (1) |
|
5.5.3.2 Hole-Transporting Materials |
|
|
302 | (1) |
|
5.5.4 Electron-Transporting Materials |
|
|
302 | (1) |
|
5.6 Electrophosphorescent PLEDs |
|
|
303 | (20) |
|
|
303 | (3) |
|
5.6.2 Electrophosphorescent PLEDs |
|
|
306 | (3) |
|
5.6.3 Nonconjugated Polymer-Based Electrophosphorescent PLEDs |
|
|
309 | (7) |
|
5.6.4 Conjugated Polymer-Based Electrophosphorescent PLEDs |
|
|
316 | (7) |
|
|
323 | (8) |
|
5.7.1 Solid-State Lighting |
|
|
323 | (1) |
|
5.7.2 Characterization of White Light |
|
|
324 | (1) |
|
5.7.3 Fabrication of White-Light PLEDs |
|
|
325 | (1) |
|
5.7.4 Efficient Excitation Energy Transfer from PFO to the Fluorenone Defect |
|
|
326 | (2) |
|
5.7.5 White Electrophosphorescent PLEDs |
|
|
328 | (2) |
|
5.7.6 Outlook of White PLEDs |
|
|
330 | (1) |
|
|
331 | (6) |
|
|
331 | (6) |
|
6 Organic Solids for Photonics |
|
|
337 | (14) |
|
|
|
337 | (1) |
|
6.2 Size Effects on the Optical Properties of Organic Solids |
|
|
338 | (4) |
|
6.2.1 Exciton Confinement Effect |
|
|
338 | (1) |
|
6.2.2 Size-Tunable Emission |
|
|
339 | (2) |
|
|
341 | (1) |
|
6.3 Aggregation-Induced Enhanced Emission |
|
|
342 | (2) |
|
|
344 | (3) |
|
|
347 | (4) |
|
|
348 | (3) |
|
7 Organic Photonic Devices |
|
|
351 | (24) |
|
|
|
351 | (1) |
|
7.2 Crystalline One-Dimensional (1-D) Organic Nanostructures |
|
|
352 | (5) |
|
7.2.1 Self-Assembly in Liquid Phase |
|
|
352 | (1) |
|
7.2.2 Template-Induced Self-Assembly in Liquid Phase |
|
|
353 | (2) |
|
7.2.3 Morphology Control with Molecular Design |
|
|
355 | (1) |
|
7.2.4 Physical Vapor Deposition (PVD) |
|
|
355 | (2) |
|
7.3 Organic Nanophotonics |
|
|
357 | (14) |
|
7.3.1 Electroluminescence and Field Emission |
|
|
358 | (1) |
|
7.3.2 Tunable Emission from Binary Organic Nanowires |
|
|
358 | (4) |
|
7.3.3 Organic 1-D Optical Waveguides |
|
|
362 | (6) |
|
7.3.4 Lasing from Organic Nanowires |
|
|
368 | (1) |
|
7.3.5 Organic Photonic Circuits |
|
|
369 | (2) |
|
|
371 | (4) |
|
|
373 | (2) |
|
8 Organic Solar Cells Based on Small Molecules |
|
|
375 | (32) |
|
|
|
|
375 | (3) |
|
8.1.1 Solar Energy and Solar Cells |
|
|
375 | (1) |
|
8.1.2 Materials Features for Solar Cells |
|
|
376 | (1) |
|
8.1.3 Device Configurations of Solar Cells |
|
|
377 | (1) |
|
8.1.3.1 Hamburger Structure |
|
|
377 | (1) |
|
|
378 | (1) |
|
8.2 Small-Molecule Donors |
|
|
378 | (13) |
|
|
379 | (5) |
|
|
384 | (3) |
|
8.2.3 Triphenylamine Derivatives |
|
|
387 | (4) |
|
8.3 Small-Molecule Acceptors |
|
|
391 | (4) |
|
|
391 | (2) |
|
8.3.2 Other Nonfullerene Acceptors |
|
|
393 | (2) |
|
8.4 Donor-Acceptor Dyad Molecules for Single-Component OPVs |
|
|
395 | (1) |
|
8.5 Conclusions and Outlook |
|
|
396 | (11) |
|
|
397 | (10) |
|
|
407 | (30) |
|
|
|
|
|
407 | (1) |
|
9.2 Polymer Donor Materials |
|
|
408 | (15) |
|
9.2.1 Polyphenylenevinylene (PPV) Derivatives |
|
|
408 | (2) |
|
9.2.2 Polythiophene Derivatives |
|
|
410 | (3) |
|
9.2.3 Polyfluorene Derivatives |
|
|
413 | (3) |
|
9.2.4 Polycarbazole Derivatives |
|
|
416 | (1) |
|
9.2.5 Polybenzodithiophene Derivatives |
|
|
417 | (2) |
|
9.2.6 Polycyclopentadithiophene Derivatives |
|
|
419 | (2) |
|
9.2.7 Metallic Conjugated Polymers |
|
|
421 | (2) |
|
9.3 Polymer Acceptor Materials |
|
|
423 | (5) |
|
9.4 Conclusions and Outlook |
|
|
428 | (9) |
|
|
429 | (8) |
|
10 Dye-Sensitized Solar Cells (DSSCs) |
|
|
437 | (30) |
|
|
|
|
437 | (5) |
|
10.2 Small-Molecule Dyes in DSSCs |
|
|
442 | (11) |
|
|
442 | (2) |
|
10.2.2 Triphenylamine Dyes |
|
|
444 | (4) |
|
10.2.3 Bisfluorenylaniline Dyes |
|
|
448 | (2) |
|
|
450 | (3) |
|
10.3 Polymer Dyes in DSSCs |
|
|
453 | (1) |
|
10.4 Dyes in p-Type DSSCs |
|
|
454 | (3) |
|
|
457 | (10) |
|
|
459 | (8) |
|
11 Organic Thermoelectric Power Devices |
|
|
467 | (20) |
|
|
|
|
|
467 | (1) |
|
11.2 Basic Thermoelectric Principles |
|
|
468 | (8) |
|
11.2.1 The Thermoelectric Effect |
|
|
468 | (4) |
|
11.2.2 Thermoelectric Efficiency and Figure of Merit |
|
|
472 | (2) |
|
11.2.3 Optimizing the Figure of Merit |
|
|
474 | (2) |
|
11.3 Thermoelectric Materials and Devices |
|
|
476 | (7) |
|
11.3.1 Inorganic Nanostructured Materials |
|
|
476 | (1) |
|
11.3.2 Single-Molecule Devices |
|
|
477 | (3) |
|
11.3.3 Devices Based on Polymers |
|
|
480 | (2) |
|
11.3.4 Devices Based on Small Molecules |
|
|
482 | (1) |
|
11.3.5 Hybrid and Composite Materials |
|
|
482 | (1) |
|
11.4 Conclusions and Outlook |
|
|
483 | (4) |
|
|
484 | (3) |
Glossary of the book |
|
487 | (10) |
Index |
|
497 | |