Preface |
|
xiii | |
Chapter 1 Some Highlights |
|
1 | (17) |
|
|
1 | (1) |
|
|
2 | (3) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (3) |
|
|
12 | (1) |
|
|
13 | (2) |
|
10 Embedding Trees into Euclidean Space |
|
|
15 | (1) |
|
|
16 | (1) |
|
12 Collected In-Text Exercises |
|
|
17 | (1) |
|
|
17 | (1) |
Chapter 2 Random Walks and Electric Networks |
|
18 | (56) |
|
1 Circuit Basics and Harmonic Functions |
|
|
18 | (6) |
|
2 More Probabilistic Interpretations |
|
|
24 | (3) |
|
|
27 | (4) |
|
|
31 | (5) |
|
5 Transience and Recurrence |
|
|
36 | (7) |
|
6 Rough Isometries and Hyperbolic Graphs |
|
|
43 | (5) |
|
7 Hitting, Commute, and Cover Times |
|
|
48 | (2) |
|
8 The Canonical Gaussian Field |
|
|
50 | (3) |
|
|
53 | (4) |
|
10 Collected In-Text Exercises |
|
|
57 | (2) |
|
|
59 | (15) |
Chapter 3 Special Networks |
|
74 | (21) |
|
1 Flows, Cutsets, and Random Paths |
|
|
74 | (5) |
|
|
79 | (2) |
|
|
81 | (5) |
|
|
86 | (4) |
|
|
90 | (1) |
|
6 Collected In-Text Exercises |
|
|
91 | (1) |
|
|
92 | (3) |
Chapter 4 Uniform Spanning Trees |
|
95 | (36) |
|
1 Generating Uniform Spanning Trees |
|
|
95 | (10) |
|
2 Electrical Interpretations |
|
|
105 | (6) |
|
|
111 | (5) |
|
|
116 | (7) |
|
5 Collected In-Text Exercises |
|
|
123 | (2) |
|
|
125 | (6) |
Chapter 5 Branching Processes, Second Moments, and Percolation |
|
131 | (43) |
|
1 Galton-Watson Branching Processes |
|
|
132 | (5) |
|
2 The First-Moment Method |
|
|
137 | (3) |
|
3 The Weighted Second-Moment Method |
|
|
140 | (3) |
|
4 Quasi-independent Percolation |
|
|
143 | (3) |
|
5 Transience of Percolation Clusters in Zd |
|
|
146 | (3) |
|
6 Reversing the Second-Moment Inequality |
|
|
149 | (4) |
|
7 Surviving Galton-Watson Trees |
|
|
153 | (7) |
|
|
160 | (2) |
|
|
162 | (2) |
|
|
164 | (2) |
|
11 Collected In-Text Exercises |
|
|
166 | (1) |
|
|
167 | (7) |
Chapter 6 Isoperimetric Inequalities |
|
174 | (59) |
|
1 Flows and Submodularity |
|
|
174 | (7) |
|
|
181 | (5) |
|
3 Nonbacktracking Paths and Cogrowth |
|
|
186 | (4) |
|
4 Relative Mixing Rate, Spectral Gap, and Expansion in Finite Networks |
|
|
190 | (5) |
|
|
195 | (5) |
|
6 Euclidean Lattices and Entropy |
|
|
200 | (5) |
|
7 Expansion Profiles and Decay of Transition Probabilities |
|
|
205 | (6) |
|
8 Anchored Isoperimetric Profiles and Transience |
|
|
211 | (2) |
|
9 Anchored Expansion and Percolation |
|
|
213 | (9) |
|
|
222 | (2) |
|
11 Collected In-Text Exercises |
|
|
224 | (1) |
|
|
225 | (8) |
Chapter 7 Percolation on Transitive Graphs |
|
233 | (40) |
|
|
235 | (2) |
|
2 Tolerance and Ergodicity |
|
|
237 | (3) |
|
3 The Number of Infinite Clusters |
|
|
240 | (4) |
|
|
244 | (6) |
|
5 Merging Infinite Clusters and Invasion Percolation |
|
|
250 | (5) |
|
|
255 | (2) |
|
|
257 | (5) |
|
8 Bootstrap Percolation on Regular Trees |
|
|
262 | (2) |
|
|
264 | (4) |
|
10 Collected In-Text Exercises |
|
|
268 | (1) |
|
|
269 | (4) |
Chapter 8 The Mass-Transport Technique and Percolation |
|
273 | (36) |
|
1 The Mass-Transport Principle for Cayley Graphs |
|
|
273 | (3) |
|
2 Beyond Cayley Graphs: Unimodularity |
|
|
276 | (6) |
|
3 Infinite Clusters in Invariant Percolation |
|
|
282 | (4) |
|
4 Critical Percolation on Nonamenable Transitive Unimodular Graphs |
|
|
286 | (1) |
|
5 Bernoulli Percolation on Planar Quasi-transitive Graphs |
|
|
287 | (4) |
|
6 Properties of Infinite Clusters |
|
|
291 | (2) |
|
7 Invariant Percolation on Amenable Graphs |
|
|
293 | (3) |
|
8 Appendix: Unimodularity of Planar Quasi-transitive Graphs |
|
|
296 | (3) |
|
|
299 | (4) |
|
10 Collected In-Text Exercises |
|
|
303 | (1) |
|
|
304 | (5) |
Chapter 9 Infinite Electrical Networks and Dirichlet Functions |
|
309 | (30) |
|
1 Free and Wired Electrical Currents |
|
|
309 | (2) |
|
|
311 | (2) |
|
3 Harmonic Dirichlet Functions |
|
|
313 | (7) |
|
4 Planar Graphs and Hyperbolic Graphs |
|
|
320 | (6) |
|
|
326 | (4) |
|
|
330 | (4) |
|
7 Collected In-Text Exercises |
|
|
334 | (1) |
|
|
335 | (4) |
Chapter 10 Uniform Spanning Forests |
|
339 | (49) |
|
1 Limits over Exhaustions |
|
|
339 | (4) |
|
2 Coupling, Harmonic Dirichlet Functions, and Expected Degree |
|
|
343 | (7) |
|
3 Planar Networks and Euclidean Lattices |
|
|
350 | (2) |
|
|
352 | (3) |
|
|
355 | (9) |
|
|
364 | (11) |
|
7 Loop-Erased Random Walk and Harmonic Measure from Infinity |
|
|
375 | (2) |
|
8 Appendix: Von Neumann Dimension and l2-Betti Numbers |
|
|
377 | (5) |
|
|
382 | (1) |
|
10 Collected In-Text Exercises |
|
|
383 | (2) |
|
|
385 | (3) |
Chapter 11 Minimal Spanning Forests |
|
388 | (22) |
|
|
388 | (3) |
|
|
391 | (4) |
|
3 Basic Probabilistic Results |
|
|
395 | (2) |
|
|
397 | (6) |
|
|
403 | (1) |
|
|
404 | (1) |
|
|
405 | (2) |
|
8 Collected In-Text Exercises |
|
|
407 | (1) |
|
|
408 | (2) |
Chapter 12 Limit Theorems for Galton-Watson Processes |
|
410 | (13) |
|
1 Size-Biased Trees and Immigration |
|
|
410 | (4) |
|
2 Supercritical Processes: Proof of the Kesten-Stigum Theorem |
|
|
414 | (2) |
|
|
416 | (1) |
|
|
417 | (3) |
|
|
420 | (1) |
|
6 Collected In-Text Exercises |
|
|
420 | (1) |
|
|
421 | (2) |
Chapter 13 Escape Rate of Random Walks and Embeddings |
|
423 | (44) |
|
|
423 | (6) |
|
2 The Varopoulos-Carne Bound |
|
|
429 | (2) |
|
3 An Application to Mixing Time |
|
|
431 | (5) |
|
4 Markov Type of Metric Spaces |
|
|
436 | (4) |
|
5 Embeddings of Finite Metric Spaces |
|
|
440 | (7) |
|
6 A Diffusive Lower Bound for Cayley Graphs |
|
|
447 | (3) |
|
7 Branching Number of a Graph |
|
|
450 | (3) |
|
8 Tree-Indexed Random Walks |
|
|
453 | (3) |
|
|
456 | (5) |
|
10 Collected In-Text Exercises |
|
|
461 | (1) |
|
|
462 | (5) |
Chapter 14 Random Walks on Groups and Poisson Boundaries |
|
467 | (45) |
|
1 Tail, Entropy, and Speed for Transitive Markov Chains |
|
|
468 | (6) |
|
2 Harmonic Functions and the Liouville Property |
|
|
474 | (6) |
|
3 Harmonic Functions and the Poisson Boundary |
|
|
480 | (6) |
|
4 Identifying the Poisson Boundary |
|
|
486 | (8) |
|
5 Appendix: Ergodic Theorems |
|
|
494 | (5) |
|
6 Appendix: The Zero-Two Law for Transitive Markov Chains |
|
|
499 | (4) |
|
|
503 | (5) |
|
8 Collected In-Text Exercises |
|
|
508 | (1) |
|
|
509 | (3) |
Chapter 15 Hausdorff Dimension |
|
512 | (22) |
|
|
512 | (4) |
|
|
516 | (5) |
|
|
521 | (3) |
|
|
524 | (2) |
|
|
526 | (4) |
|
|
530 | (1) |
|
7 Collected In-Text Exercises |
|
|
530 | (1) |
|
|
531 | (3) |
Chapter 16 Capacity and Stochastic Processes |
|
534 | (22) |
|
|
534 | (3) |
|
|
537 | (1) |
|
|
538 | (3) |
|
4 Fractal Percolation and Brownian Intersections |
|
|
541 | (7) |
|
5 Generalized Diameters and Average Meeting Height on Trees |
|
|
548 | (2) |
|
|
550 | (3) |
|
7 Collected In-Text Exercises |
|
|
553 | (1) |
|
|
554 | (2) |
Chapter 17 Random Walks on Galton-Watson Trees |
|
556 | (38) |
|
1 Markov Chains and Ergodic Theory |
|
|
556 | (3) |
|
2 Stationary Measures on Trees |
|
|
559 | (6) |
|
3 Speed on Galton-Watson Trees |
|
|
565 | (4) |
|
4 Harmonic Measure: The Goal |
|
|
569 | (1) |
|
5 Flow Rules and Markov Chains on the Space of Trees |
|
|
570 | (3) |
|
6 The Holder Exponent of Limit Uniform Measure |
|
|
573 | (3) |
|
7 Dimension Drop for Other Flow Rules |
|
|
576 | (1) |
|
8 Harmonic-Stationary Measure |
|
|
577 | (3) |
|
9 Confinement of Simple Random Walk |
|
|
580 | (3) |
|
10 Numerical Calculations |
|
|
583 | (5) |
|
|
588 | (1) |
|
12 Collected In-Text Exercises |
|
|
589 | (1) |
|
|
590 | (4) |
Comments on Exercises |
|
594 | (54) |
Bibliography |
|
648 | (39) |
Glossary of Notation |
|
687 | (3) |
Index |
|
690 | |