Preface |
|
xiii | |
|
Chapter 1 Some Highlights |
|
|
1 | (17) |
|
|
1 | (1) |
|
|
2 | (3) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (3) |
|
|
12 | (1) |
|
|
13 | (2) |
|
10 Embedding Trees into Euclidean Space |
|
|
15 | (1) |
|
|
16 | (1) |
|
12 Collected In-Text Exercises |
|
|
17 | (1) |
|
|
17 | (1) |
|
Chapter 2 Random Walks and Electric Networks |
|
|
18 | (57) |
|
1 Circuit Basics and Harmonic Functions |
|
|
18 | (6) |
|
2 More Probabilistic, Interpretations |
|
|
24 | (3) |
|
|
27 | (4) |
|
|
31 | (5) |
|
5 Transience and Recurrence |
|
|
36 | (7) |
|
6 Rough Isometries and Hyperbolic Graphs |
|
|
43 | (5) |
|
7 Hitting, Commute, and Cover Times |
|
|
48 | (2) |
|
8 The Canonical Gaussian Field |
|
|
50 | (3) |
|
|
53 | (4) |
|
10 Collected In-Text Exercises |
|
|
57 | (3) |
|
|
60 | (15) |
|
Chapter 3 Special Networks |
|
|
75 | (21) |
|
1 Flows, Cutsets, and Random Paths |
|
|
75 | (5) |
|
|
80 | (2) |
|
|
82 | (5) |
|
|
87 | (5) |
|
|
92 | (1) |
|
6 Collected In-Text Exercises |
|
|
92 | (1) |
|
|
93 | (3) |
|
Chapter 4 Uniform Spanning Trees |
|
|
96 | (37) |
|
1 Generating Uniform Spanning Trees |
|
|
96 | (10) |
|
2 Electrical Interpretations |
|
|
106 | (6) |
|
|
112 | (5) |
|
|
117 | (8) |
|
5 Collected In-Text Exercises |
|
|
125 | (2) |
|
|
127 | (6) |
|
Chapter 5 Branching Processes, Second Moments, and Percolation |
|
|
133 | (43) |
|
1 Galton-Watson Branching Processes |
|
|
134 | (5) |
|
2 The First-Moment Method |
|
|
139 | (3) |
|
3 The Weighted Second-Moment Method |
|
|
142 | (3) |
|
4 Quasi-independent Percolation |
|
|
145 | (3) |
|
5 Transience of Percolation Clusters in Z |
|
|
148 | (3) |
|
6 Reversing the Second-Moment Inequality |
|
|
151 | (4) |
|
7 Surviving Galton-Watson Trees |
|
|
155 | (7) |
|
|
162 | (2) |
|
|
164 | (2) |
|
|
166 | (2) |
|
11 Collected In-Text Exercises |
|
|
168 | (1) |
|
|
169 | (7) |
|
Chapter 6 Isoperimetric Inequalities |
|
|
176 | (60) |
|
1 Flows and Submodularity |
|
|
176 | (7) |
|
|
183 | (5) |
|
3 Nonbacktracking Paths and Cogrowth |
|
|
188 | (4) |
|
4 Relative Mixing Rate, Spectral Gap, and Expansion in Finite Networks |
|
|
192 | (5) |
|
|
197 | (6) |
|
6 Euclidean Lattices and Entropy |
|
|
203 | (4) |
|
7 Expansion Profiles and Decay of Transition Probabilities |
|
|
207 | (7) |
|
8 Anchored Isoperimetric Profiles and Transience |
|
|
214 | (2) |
|
9 Anchored Expansion and Percolation |
|
|
216 | (8) |
|
|
224 | (3) |
|
11 Collected In-Text Exercises |
|
|
227 | (1) |
|
|
228 | (8) |
|
Chapter 7 Percolation on Transitive Graphs |
|
|
236 | (40) |
|
|
238 | (2) |
|
2 Tolerance and Ergodicity |
|
|
240 | (3) |
|
3 The Number of Infinite Clusters |
|
|
243 | (4) |
|
|
247 | (6) |
|
5 Merging Infinite Clusters and Invasion Percolation |
|
|
253 | (5) |
|
|
258 | (2) |
|
|
260 | (5) |
|
8 Bootstrap Percolation on Regular Trees |
|
|
265 | (2) |
|
|
267 | (5) |
|
10 Collected In-Text Exercises |
|
|
272 | (1) |
|
|
273 | (3) |
|
Chapter 8 The Mass-Transport Technique and Percolation |
|
|
276 | (36) |
|
1 The Mass-Transport Principle for Cayley Graphs |
|
|
276 | (3) |
|
2 Beyond Cayley Graphs: Unimodularity |
|
|
279 | (6) |
|
3 Infinite Clusters in Invariant Percolation |
|
|
285 | (4) |
|
4 Critical Percolation on Nonamenable Transitive Unimodular Graphs |
|
|
289 | (1) |
|
5 Bernoulli Percolation on Planar, Quasi-transitive Graphs |
|
|
290 | (4) |
|
6 Properties of Infinite Clusters |
|
|
294 | (2) |
|
7 Invariant Percolation on Amenable Graphs |
|
|
296 | (3) |
|
8 Appendix: Unimodularity of Planar, Quasi-transitive Graphs |
|
|
299 | (3) |
|
|
302 | (4) |
|
10 Collected In-Text Exercises |
|
|
306 | (1) |
|
|
307 | (5) |
|
Chapter 9 Infinite Electrical Networks and Dirichlet Functions |
|
|
312 | (30) |
|
1 Free and Wired Electrical Currents |
|
|
312 | (2) |
|
|
314 | (2) |
|
3 Harmonic Dirichlet Functions |
|
|
316 | (7) |
|
4 Planar Graphs and Hyperbolic Graphs |
|
|
323 | (6) |
|
|
329 | (4) |
|
|
333 | (4) |
|
7 Collected In-Text Exercises |
|
|
337 | (1) |
|
|
338 | (4) |
|
Chapter 10 Uniform Spanning Forests |
|
|
342 | (49) |
|
1 Limits over Exhaustions |
|
|
342 | (4) |
|
2 Coupling, Harmonic Dirichlet Functions, and Expected Degree |
|
|
346 | (7) |
|
3 Planar Networks and Euclidean Lattices |
|
|
353 | (2) |
|
|
355 | (3) |
|
|
358 | (9) |
|
|
367 | (11) |
|
7 Loop-Erased Random Walk and Harmonic Measure from Infinity |
|
|
378 | (2) |
|
8 Appendix: Von Neumann Dimension and l2-Betti Numbers |
|
|
380 | (5) |
|
|
385 | (1) |
|
10 Collected In-Text Exercises |
|
|
386 | (2) |
|
|
388 | (3) |
|
Chapter 11 Minimal Spanning Forests |
|
|
391 | (22) |
|
|
391 | (3) |
|
|
394 | (4) |
|
3 Basic Probabilistic Results s |
|
|
398 | (2) |
|
|
400 | (6) |
|
|
406 | (1) |
|
|
407 | (1) |
|
|
408 | (2) |
|
8 Collected In-Text Exercises |
|
|
410 | (1) |
|
|
411 | (2) |
|
Chapter 12 Limit Theorems for Galton-Watson Processes |
|
|
413 | (13) |
|
1 Size-Biased Trees and Immigration |
|
|
413 | (4) |
|
2 Supercritical Processes: Proof of the Kesten-Stigum Theorem |
|
|
417 | (2) |
|
|
419 | (1) |
|
|
420 | (3) |
|
|
423 | (1) |
|
6 Collected In-Text Exercises |
|
|
423 | (1) |
|
|
424 | (2) |
|
Chapter 13 Escape Rate of Random Walks and Embeddings |
|
|
426 | (44) |
|
|
426 | (6) |
|
2 The Varopoulos-Carne Bound |
|
|
432 | (2) |
|
3 An Application to Mixing Time |
|
|
434 | (5) |
|
4 Markov Type of Metric Spaces |
|
|
439 | (4) |
|
5 Embeddings of Finite Metric Spaces |
|
|
443 | (7) |
|
6 A Diffusive Lower Bound for Cayley Graphs |
|
|
450 | (3) |
|
7 Branching Number of a Graph |
|
|
453 | (3) |
|
8 Tree-Indexed Random Walks |
|
|
456 | (3) |
|
|
459 | (5) |
|
10 Collected In-Text Exercises |
|
|
464 | (1) |
|
|
465 | (5) |
|
Chapter 14 Random Walks on Groups and Poisson Boundaries |
|
|
470 | (45) |
|
1 Tail, Entropy, and Speed for Transitive Markov Chains |
|
|
471 | (6) |
|
2 Harmonic Functions and the Liouville Property |
|
|
477 | (6) |
|
3 Harmonic Functions and the Poisson Boundary |
|
|
483 | (6) |
|
4 Identifying the Poisson Boundary |
|
|
489 | (8) |
|
5 Appendix: Ergodic Theorems |
|
|
497 | (5) |
|
6 Appendix: The Zero-Two Law for Transitive Markov Chains |
|
|
502 | (4) |
|
|
506 | (5) |
|
8 Collected In-Text Exercises |
|
|
511 | (1) |
|
|
512 | (3) |
|
Chapter 15 Hausdorff Dimension |
|
|
515 | (22) |
|
|
515 | (4) |
|
|
519 | (5) |
|
|
524 | (3) |
|
|
527 | (2) |
|
|
529 | (4) |
|
|
533 | (1) |
|
7 Collected In-Text Exercises |
|
|
533 | (1) |
|
|
534 | (3) |
|
Chapter 16 Capacity and Stochastic Processes |
|
|
537 | (22) |
|
|
537 | (3) |
|
|
540 | (1) |
|
|
541 | (3) |
|
4 Fractal Percolation and Brownian Intersections |
|
|
544 | (7) |
|
5 Generalized Diameters and Average Meeting Height on Trees |
|
|
551 | (2) |
|
|
553 | (3) |
|
7 Collected In-Text Exercises |
|
|
556 | (1) |
|
|
557 | (2) |
|
Chapter 17 Random Walks on Galton-Watson Trees |
|
|
559 | (38) |
|
1 Markov Chains and Ergodic Theory |
|
|
559 | (3) |
|
2 Stationary Measures on Trees |
|
|
562 | (6) |
|
3 Speed on Galton-Watson Trees |
|
|
568 | (4) |
|
4 Harmonic Measure: The Goal |
|
|
572 | (1) |
|
5 Flow Rules and Markov Chains on the Space of Trees |
|
|
573 | (3) |
|
6 The Holder Exponent of Limit Uniform Measure |
|
|
576 | (3) |
|
7 Dimension Drop for Other Flow Rules |
|
|
579 | (1) |
|
8 Harmonic-Stationary Measure |
|
|
580 | (3) |
|
9 Confinement of Simple Random Walk |
|
|
583 | (3) |
|
10 Numerical Calculations |
|
|
586 | (5) |
|
|
591 | (1) |
|
12 Collected In-Text Exercises |
|
|
592 | (1) |
|
|
593 | (4) |
Comments on Exercises |
|
597 | (49) |
Bibliography |
|
646 | (41) |
Glossary of Notation |
|
687 | (3) |
Index |
|
690 | |