Preface |
|
xiii | |
About the Authors |
|
xv | |
|
|
1 | (24) |
|
1.1 Motivation and Contents |
|
|
1 | (1) |
|
|
2 | (5) |
|
1.3 Polymer Matrices for Composites |
|
|
7 | (5) |
|
|
7 | (2) |
|
1.3.2 Comparison between Thermoplastic and Thermoset Polymers |
|
|
9 | (2) |
|
1.3.3 Additives and Inert Fillers |
|
|
11 | (1) |
|
|
12 | (3) |
|
1.4.1 Fiber-Matrix Interface |
|
|
14 | (1) |
|
|
15 | (3) |
|
1.5.1 Short Fiber Composites |
|
|
15 | (2) |
|
1.5.2 Advanced Composites |
|
|
17 | (1) |
|
1.6 General Approach to Modeling |
|
|
18 | (1) |
|
1.7 Organization of the Book |
|
|
19 | (1) |
|
|
20 | (5) |
|
|
20 | (1) |
|
|
21 | (4) |
|
2 Overview of Manufacturing Processes |
|
|
25 | (48) |
|
|
25 | (1) |
|
2.2 Classification Based on Dominant Flow Process |
|
|
26 | (1) |
|
2.3 Short Fiber Suspension Manufacturing Methods |
|
|
27 | (16) |
|
|
30 | (5) |
|
|
35 | (3) |
|
2.3.3 Compression Molding |
|
|
38 | (4) |
|
2.3.4 Structural Foam Molding |
|
|
42 | (1) |
|
|
43 | (1) |
|
2.4 Advanced Thermoplastic Manufacturing Methods |
|
|
43 | (10) |
|
|
45 | (3) |
|
2.4.2 Thermoplastic Pultrusion |
|
|
48 | (3) |
|
2.4.3 Thermoplastic Tape Lay-Up Process |
|
|
51 | (2) |
|
2.5 Advanced Thermoset Composite Manufacturing Methods |
|
|
53 | (11) |
|
2.5.1 Autoclave Processing |
|
|
53 | (3) |
|
2.5.2 Liquid Composite Molding |
|
|
56 | (6) |
|
|
62 | (2) |
|
|
64 | (9) |
|
|
64 | (4) |
|
|
68 | (5) |
|
3 Transport Equations for Composite Processing |
|
|
73 | (56) |
|
3.1 Introduction to Process Models |
|
|
73 | (1) |
|
3.2 Conservation of Mass (Continuity Equation) |
|
|
74 | (6) |
|
3.2.1 Conservation of Mass |
|
|
75 | (4) |
|
3.2.2 Mass Conservation for Resin with Presence of Fibers |
|
|
79 | (1) |
|
3.3 Conservation of Momentum (Equation of Motion) |
|
|
80 | (5) |
|
3.4 Stress-Strain Rate Relationship |
|
|
85 | (14) |
|
3.4.1 Kinematics of Fluid |
|
|
85 | (10) |
|
|
95 | (4) |
|
3.5 Examples to Solve Viscous Flow Problems |
|
|
99 | (15) |
|
3.5.1 Boundary Conditions |
|
|
99 | (4) |
|
|
103 | (11) |
|
3.6 Conservation of Energy |
|
|
114 | (13) |
|
3.6.1 Heat Flux-Temperature Gradient Relationship |
|
|
120 | (2) |
|
3.6.2 Thermal Boundary Conditions |
|
|
122 | (5) |
|
|
127 | (2) |
|
|
127 | (1) |
|
|
127 | (2) |
|
4 Constitutive Laws and Their Characterization |
|
|
129 | (66) |
|
|
129 | (1) |
|
|
130 | (10) |
|
4.2.1 Shear Rate Dependence |
|
|
132 | (5) |
|
4.2.2 Temperature and Cure Dependence |
|
|
137 | (3) |
|
4.3 Viscosity of Aligned Fiber Thermoplastic Laminates |
|
|
140 | (9) |
|
|
149 | (8) |
|
4.4.1 Regimes of Fiber Suspension |
|
|
149 | (6) |
|
4.4.2 Constitutive Equations |
|
|
155 | (2) |
|
|
157 | (10) |
|
4.5.1 Techniques to Monitor Cure: Macroscopic Characterization |
|
|
163 | (2) |
|
4.5.2 Technique to Monitor Cure: Microscopic Characterization |
|
|
165 | (1) |
|
4.5.3 Effect of Reinforcements on Cure Kinetics |
|
|
166 | (1) |
|
4.6 Thermoplastic Reactive Processing |
|
|
167 | (1) |
|
4.7 Crystallization Kinetics |
|
|
168 | (5) |
|
|
168 | (1) |
|
4.7.2 Solidification and Crystallization |
|
|
169 | (1) |
|
|
170 | (1) |
|
4.7.4 Crystalline Structure |
|
|
170 | (2) |
|
|
172 | (1) |
|
4.7.6 Macroscopic Crystallization |
|
|
172 | (1) |
|
|
173 | (10) |
|
4.8.1 Permeability and Preform Parameters |
|
|
178 | (1) |
|
4.8.2 Analytic and Numerical Characterization of Permeability |
|
|
179 | (2) |
|
4.8.3 Experimental Characterization of Permeability |
|
|
181 | (2) |
|
|
183 | (4) |
|
|
187 | (8) |
|
|
187 | (2) |
|
4.10.2 Fill in the Blanks |
|
|
189 | (3) |
|
|
192 | (3) |
|
5 Model Simplifications and Solutions |
|
|
195 | (68) |
|
|
195 | (2) |
|
5.1.1 Usefulness of Models |
|
|
196 | (1) |
|
5.2 Formulation of Models |
|
|
197 | (5) |
|
|
197 | (2) |
|
5.2.2 Building the Mathematical Model |
|
|
199 | (1) |
|
5.2.3 Solution of the Equations |
|
|
200 | (1) |
|
|
200 | (1) |
|
5.2.5 Revisions of the Model |
|
|
201 | (1) |
|
5.3 Model and Geometry Simplifications |
|
|
202 | (4) |
|
5.4 Dimensionless Analysis and Dimensionless Numbers |
|
|
206 | (17) |
|
5.4.1 Dimensionless Numbers Used in Composites Processing |
|
|
212 | (11) |
|
5.5 Customary Assumptions in Polymer Composite Processing |
|
|
223 | (3) |
|
|
223 | (1) |
|
5.5.2 Fully Developed Region and Entrance Effects |
|
|
224 | (1) |
|
5.5.3 Lubrication Approximation |
|
|
225 | (1) |
|
5.5.4 Thin Shell Approximation |
|
|
226 | (1) |
|
5.6 Boundary Conditions for Flow Analysis |
|
|
226 | (5) |
|
5.6.1 In Contact with a Solid Surface |
|
|
226 | (1) |
|
5.6.2 In Contact with Other Fluid Surfaces |
|
|
227 | (1) |
|
|
228 | (1) |
|
5.6.4 No Flow out of a Solid Surface |
|
|
228 | (1) |
|
5.6.5 Specified Conditions |
|
|
229 | (1) |
|
5.6.6 Periodic Boundary Condition |
|
|
230 | (1) |
|
5.6.7 Temperature Boundary Conditions |
|
|
230 | (1) |
|
5.7 Convection of Variables |
|
|
231 | (1) |
|
5.8 Process Models from Simplified Geometries |
|
|
232 | (11) |
|
5.8.1 Model Construction Based on Simple Geometries |
|
|
239 | (4) |
|
5.9 Mathematical Tools for Simplification |
|
|
243 | (7) |
|
5.9.1 Transformation of Coordinates |
|
|
244 | (3) |
|
|
247 | (2) |
|
5.9.3 Decoupling of Equations |
|
|
249 | (1) |
|
|
250 | (4) |
|
5.10.1 Closed-Form Solutions |
|
|
251 | (3) |
|
|
254 | (2) |
|
|
256 | (2) |
|
5.12.1 Various Approaches for Validation |
|
|
256 | (2) |
|
|
258 | (5) |
|
|
258 | (3) |
|
|
261 | (2) |
|
|
263 | (74) |
|
|
263 | (2) |
|
|
265 | (26) |
|
6.2.1 Basic Processing Steps [ 1] |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
267 | (1) |
|
|
267 | (3) |
|
|
270 | (4) |
|
6.2.6 Lubricated Squeeze Flow Model |
|
|
274 | (5) |
|
6.2.7 Hele-Shaw Model with a Partial Slip Boundary Condition [ 2-4] |
|
|
279 | (5) |
|
6.2.8 Heat Transfer and Cure |
|
|
284 | (4) |
|
|
288 | (1) |
|
6.2.10 Coupling of Heat Transfer with Cure |
|
|
288 | (2) |
|
|
290 | (1) |
|
|
291 | (13) |
|
|
293 | (3) |
|
6.3.2 Calculation of Power Requirements [ 5] |
|
|
296 | (2) |
|
6.3.3 Variable Channel Length [ 5] |
|
|
298 | (2) |
|
6.3.4 Newtonian Adiabatic Analysis [ 5] |
|
|
300 | (4) |
|
|
304 | (24) |
|
6.4.1 Process Description |
|
|
304 | (2) |
|
|
306 | (1) |
|
|
306 | (1) |
|
|
307 | (1) |
|
6.4.5 Model Formulation for Injection Molding |
|
|
308 | (15) |
|
|
323 | (5) |
|
|
328 | (9) |
|
|
328 | (4) |
|
|
332 | (2) |
|
|
334 | (3) |
|
7 Adv. Thermoplastic Composite Manuf. Processes |
|
|
337 | (54) |
|
|
337 | (1) |
|
7.2 Composite Sheet Forming Processes |
|
|
338 | (8) |
|
|
339 | (1) |
|
7.2.2 Matched Die Forming |
|
|
339 | (2) |
|
7.2.3 Stretch and Roll Forming |
|
|
341 | (1) |
|
7.2.4 Deformation Mechanisms |
|
|
342 | (4) |
|
|
346 | (9) |
|
7.3.1 Thermoset versus Thermoplastic Pultrusion |
|
|
346 | (1) |
|
|
347 | (8) |
|
|
355 | (9) |
|
7.4.1 Transient Heat Transfer Equation |
|
|
355 | (6) |
|
7.4.2 Viscous Dissipation |
|
|
361 | (3) |
|
7.5 On-Line Consolidation of Thermoplastics |
|
|
364 | (22) |
|
7.5.1 Introduction to Consolidation Model |
|
|
367 | (1) |
|
7.5.2 Importance of Process Modeling |
|
|
367 | (2) |
|
7.5.3 Consolidation Process Model |
|
|
369 | (1) |
|
7.5.4 Model Assumptions and Simplifications |
|
|
369 | (1) |
|
7.5.5 Governing Equations |
|
|
370 | (5) |
|
7.5.6 Boundary Conditions |
|
|
375 | (1) |
|
7.5.7 Rheology of the Composite |
|
|
376 | (1) |
|
|
377 | (7) |
|
7.5.9 Inverse Problem of Force Control |
|
|
384 | (1) |
|
7.5.10 Extended Consolidation Model |
|
|
384 | (2) |
|
|
386 | (5) |
|
|
386 | (1) |
|
|
387 | (3) |
|
|
390 | (1) |
|
8 Processing Advanced Thermoset Fiber Composites |
|
|
391 | (122) |
|
|
391 | (1) |
|
|
392 | (23) |
|
|
393 | (1) |
|
8.2.2 Material and Process Parameters |
|
|
394 | (6) |
|
|
400 | (1) |
|
|
401 | (1) |
|
8.2.5 Flow Model for Autoclave Processing |
|
|
401 | (14) |
|
8.3 Liquid Composite Molding |
|
|
415 | (81) |
|
8.3.1 Similarities and Differences between Various LCM Processes |
|
|
416 | (4) |
|
8.3.2 Important Components of LCM Processes |
|
|
420 | (8) |
|
8.3.3 Modeling Flow Issues in LCM |
|
|
428 | (12) |
|
|
440 | (1) |
|
|
440 | (9) |
|
8.3.6 Heat Transfer and Cure |
|
|
449 | (11) |
|
8.3.7 Numerical Simulation of Resin Flow in LCM Processes |
|
|
460 | (3) |
|
|
463 | (1) |
|
8.3.9 Numerical Solution of Pressure and Velocity Distributions at the End of Mold Filling Using Finite Difference Method |
|
|
463 | (9) |
|
8.3.10 Liquid Injection Molding Simulation (LIMS) |
|
|
472 | (8) |
|
8.3.11 Case Studies Using LIMS |
|
|
480 | (16) |
|
8.4 Filament Winding of Thermosetting Matrix Composites |
|
|
496 | (9) |
|
|
496 | (2) |
|
|
498 | (7) |
|
|
505 | (1) |
|
|
505 | (8) |
|
|
505 | (3) |
|
|
508 | (2) |
|
|
510 | (3) |
A MATLAB Files |
|
513 | (46) |
B Solution to Example 8.13 Using FDM |
|
559 | (4) |
C Additional Examples with LIMS to Model Liquid Mold Filling |
|
563 | (20) |
Bibliography |
|
583 | (28) |
Index |
|
611 | |