Atnaujinkite slapukų nuostatas

El. knyga: Process Modeling in Composites Manufacturing

(University of Delaware, Newark, USA), (Koc University, Istanbul, Turkey)
  • Formatas: 630 pages
  • Išleidimo metai: 14-Jul-2010
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781466580565
Kitos knygos pagal šią temą:
  • Formatas: 630 pages
  • Išleidimo metai: 14-Jul-2010
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781466580565
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

There is a wealth of literature on modeling and simulation of polymer composite manufacturing processes. However, existing books neglect to provide a systematic explanation of how to formulate and apply science-based models in polymer composite manufacturing processes. Process Modeling in Composites Manufacturing, Second Edition provides tangible methods to optimize this process-and it remains a proven, powerful introduction to the basic principles of fluid mechanics and heat transfer.

Includes tools to develop an "experience base" to aid in modeling a composite manufacturing process

Building on past developments, this book updates the previous edition's coverage of process physics and the state of modeling in the field. Exploring research derived from experience, intuition, and trial and error, the authors provide state-of-the-art understanding of mass, momentum, and energy transfer during composites processing. They introduce computer-based solutions using MATLAB® code and flow simulation-based anaiysis, which complement closed form solutions discussed in the book, to help readers understand the role of different material, geometric, and process parameters

This self-contained primer provides an introduction to modeling of composite manufacturing processes for anyone working in-material science and engineering. industrial, mechanical, and chemical engineering. It introduces a scientfic for manufacturing, using solved example problems which employ calcalculations provided in the book. End-of-chapter questions and problems and "fill in the blanks" sections reinforce the content in order to develop the experience base of the manufacturing, materials, and design engineers or scientists, as well as senior undergraduate and first-year graduate students.

Preface xiii
About the Authors xv
1 Introduction
1(24)
1.1 Motivation and Contents
1(1)
1.2 Preliminaries
2(5)
1.3 Polymer Matrices for Composites
7(5)
1.3.1 Polymer Resins
7(2)
1.3.2 Comparison between Thermoplastic and Thermoset Polymers
9(2)
1.3.3 Additives and Inert Fillers
11(1)
1.4 Fibers
12(3)
1.4.1 Fiber-Matrix Interface
14(1)
1.5 Classification
15(3)
1.5.1 Short Fiber Composites
15(2)
1.5.2 Advanced Composites
17(1)
1.6 General Approach to Modeling
18(1)
1.7 Organization of the Book
19(1)
1.8 Exercises
20(5)
1.8.1 Questions
20(1)
1.8.2 Fill in the Blanks
21(4)
2 Overview of Manufacturing Processes
25(48)
2.1 Background
25(1)
2.2 Classification Based on Dominant Flow Process
26(1)
2.3 Short Fiber Suspension Manufacturing Methods
27(16)
2.3.1 Injection Molding
30(5)
2.3.2 Extrusion
35(3)
2.3.3 Compression Molding
38(4)
2.3.4 Structural Foam Molding
42(1)
2.3.5 Rotational Molding
43(1)
2.4 Advanced Thermoplastic Manufacturing Methods
43(10)
2.4.1 Sheet Forming
45(3)
2.4.2 Thermoplastic Pultrusion
48(3)
2.4.3 Thermoplastic Tape Lay-Up Process
51(2)
2.5 Advanced Thermoset Composite Manufacturing Methods
53(11)
2.5.1 Autoclave Processing
53(3)
2.5.2 Liquid Composite Molding
56(6)
2.5.3 Filament Winding
62(2)
2.6 Exercises
64(9)
2.6.1 Questions
64(4)
2.6.2 Fill in the Blanks
68(5)
3 Transport Equations for Composite Processing
73(56)
3.1 Introduction to Process Models
73(1)
3.2 Conservation of Mass (Continuity Equation)
74(6)
3.2.1 Conservation of Mass
75(4)
3.2.2 Mass Conservation for Resin with Presence of Fibers
79(1)
3.3 Conservation of Momentum (Equation of Motion)
80(5)
3.4 Stress-Strain Rate Relationship
85(14)
3.4.1 Kinematics of Fluid
85(10)
3.4.2 Newtonian Fluids
95(4)
3.5 Examples to Solve Viscous Flow Problems
99(15)
3.5.1 Boundary Conditions
99(4)
3.5.2 Solution Procedure
103(11)
3.6 Conservation of Energy
114(13)
3.6.1 Heat Flux-Temperature Gradient Relationship
120(2)
3.6.2 Thermal Boundary Conditions
122(5)
3.7 Exercises
127(2)
3.7.1 Questions
127(1)
3.7.2 Problems
127(2)
4 Constitutive Laws and Their Characterization
129(66)
4.1 Introduction
129(1)
4.2 Resin Viscosity
130(10)
4.2.1 Shear Rate Dependence
132(5)
4.2.2 Temperature and Cure Dependence
137(3)
4.3 Viscosity of Aligned Fiber Thermoplastic Laminates
140(9)
4.4 Suspension Viscosity
149(8)
4.4.1 Regimes of Fiber Suspension
149(6)
4.4.2 Constitutive Equations
155(2)
4.5 Reaction Kinetics
157(10)
4.5.1 Techniques to Monitor Cure: Macroscopic Characterization
163(2)
4.5.2 Technique to Monitor Cure: Microscopic Characterization
165(1)
4.5.3 Effect of Reinforcements on Cure Kinetics
166(1)
4.6 Thermoplastic Reactive Processing
167(1)
4.7 Crystallization Kinetics
168(5)
4.7.1 Introduction
168(1)
4.7.2 Solidification and Crystallization
169(1)
4.7.3 Background
170(1)
4.7.4 Crystalline Structure
170(2)
4.7.5 Spherulitic Growth
172(1)
4.7.6 Macroscopic Crystallization
172(1)
4.8 Permeability
173(10)
4.8.1 Permeability and Preform Parameters
178(1)
4.8.2 Analytic and Numerical Characterization of Permeability
179(2)
4.8.3 Experimental Characterization of Permeability
181(2)
4.9 Fiber Stress
183(4)
4.10 Exercises
187(8)
4.10.1 Questions
187(2)
4.10.2 Fill in the Blanks
189(3)
4.10.3 Problems
192(3)
5 Model Simplifications and Solutions
195(68)
5.1 Introduction
195(2)
5.1.1 Usefulness of Models
196(1)
5.2 Formulation of Models
197(5)
5.2.1 Problem Definition
197(2)
5.2.2 Building the Mathematical Model
199(1)
5.2.3 Solution of the Equations
200(1)
5.2.4 Model Assessment
200(1)
5.2.5 Revisions of the Model
201(1)
5.3 Model and Geometry Simplifications
202(4)
5.4 Dimensionless Analysis and Dimensionless Numbers
206(17)
5.4.1 Dimensionless Numbers Used in Composites Processing
212(11)
5.5 Customary Assumptions in Polymer Composite Processing
223(3)
5.5.1 Quasi-Steady State
223(1)
5.5.2 Fully Developed Region and Entrance Effects
224(1)
5.5.3 Lubrication Approximation
225(1)
5.5.4 Thin Shell Approximation
226(1)
5.6 Boundary Conditions for Flow Analysis
226(5)
5.6.1 In Contact with a Solid Surface
226(1)
5.6.2 In Contact with Other Fluid Surfaces
227(1)
5.6.3 Free Surfaces
228(1)
5.6.4 No Flow out of a Solid Surface
228(1)
5.6.5 Specified Conditions
229(1)
5.6.6 Periodic Boundary Condition
230(1)
5.6.7 Temperature Boundary Conditions
230(1)
5.7 Convection of Variables
231(1)
5.8 Process Models from Simplified Geometries
232(11)
5.8.1 Model Construction Based on Simple Geometries
239(4)
5.9 Mathematical Tools for Simplification
243(7)
5.9.1 Transformation of Coordinates
244(3)
5.9.2 Superposition
247(2)
5.9.3 Decoupling of Equations
249(1)
5.10 Solution Methods
250(4)
5.10.1 Closed-Form Solutions
251(3)
5.1 Numerical Methods
254(2)
5.12 Validation
256(2)
5.12.1 Various Approaches for Validation
256(2)
5.13 Exercises
258(5)
5.13.1 Questions
258(3)
5.13.2 Problems
261(2)
6 Short Fiber Composites
263(74)
6.1 Introduction
263(2)
6.2 Compression Molding
265(26)
6.2.1 Basic Processing Steps [ 1]
265(1)
6.2.2 Applications [ 1]
266(1)
6.2.3 Flow Modeling
267(1)
6.2.4 Thin Cavity Models
267(3)
6.2.5 Hele-Shaw Model
270(4)
6.2.6 Lubricated Squeeze Flow Model
274(5)
6.2.7 Hele-Shaw Model with a Partial Slip Boundary Condition [ 2-4]
279(5)
6.2.8 Heat Transfer and Cure
284(4)
6.2.9 Cure
288(1)
6.2.10 Coupling of Heat Transfer with Cure
288(2)
6.2.11 Fiber Orientation
290(1)
6.3 Extrusion
291(13)
6.3.1 Flow Modeling
293(3)
6.3.2 Calculation of Power Requirements [ 5]
296(2)
6.3.3 Variable Channel Length [ 5]
298(2)
6.3.4 Newtonian Adiabatic Analysis [ 5]
300(4)
6.4 Injection Molding
304(24)
6.4.1 Process Description
304(2)
6.4.2 Materials
306(1)
6.4.3 Applications
306(1)
6.4.4 Critical Issues
307(1)
6.4.5 Model Formulation for Injection Molding
308(15)
6.4.6 Fiber Orientation
323(5)
6.5 Exercises
328(9)
6.5.1 Questions
328(4)
6.5.2 Fill in the Blanks
332(2)
6.5.3 Problems
334(3)
7 Adv. Thermoplastic Composite Manuf. Processes
337(54)
7.1 Introduction
337(1)
7.2 Composite Sheet Forming Processes
338(8)
7.2.1 Diaphragm Forming
339(1)
7.2.2 Matched Die Forming
339(2)
7.2.3 Stretch and Roll Forming
341(1)
7.2.4 Deformation Mechanisms
342(4)
7.3 Pultrusion
346(9)
7.3.1 Thermoset versus Thermoplastic Pultrusion
346(1)
7.3.2 Cell Model [ 6]
347(8)
7.4 Thermal Model
355(9)
7.4.1 Transient Heat Transfer Equation
355(6)
7.4.2 Viscous Dissipation
361(3)
7.5 On-Line Consolidation of Thermoplastics
364(22)
7.5.1 Introduction to Consolidation Model
367(1)
7.5.2 Importance of Process Modeling
367(2)
7.5.3 Consolidation Process Model
369(1)
7.5.4 Model Assumptions and Simplifications
369(1)
7.5.5 Governing Equations
370(5)
7.5.6 Boundary Conditions
375(1)
7.5.7 Rheology of the Composite
376(1)
7.5.8 Model Solutions
377(7)
7.5.9 Inverse Problem of Force Control
384(1)
7.5.10 Extended Consolidation Model
384(2)
7.6 Exercises
386(5)
7.6.1 Questions
386(1)
7.6.2 Fill in the Blanks
387(3)
7.6.3 Problems
390(1)
8 Processing Advanced Thermoset Fiber Composites
391(122)
8.1 Introduction
391(1)
8.2 Autoclave Molding
392(23)
8.2.1 Part Preparation
393(1)
8.2.2 Material and Process Parameters
394(6)
8.2.3 Processing Steps
400(1)
8.2.4 Critical Issues
401(1)
8.2.5 Flow Model for Autoclave Processing
401(14)
8.3 Liquid Composite Molding
415(81)
8.3.1 Similarities and Differences between Various LCM Processes
416(4)
8.3.2 Important Components of LCM Processes
420(8)
8.3.3 Modeling Flow Issues in LCM
428(12)
8.3.4 Process Models
440(1)
8.3.5 Resin Flow
440(9)
8.3.6 Heat Transfer and Cure
449(11)
8.3.7 Numerical Simulation of Resin Flow in LCM Processes
460(3)
8.3.8 Case Studies
463(1)
8.3.9 Numerical Solution of Pressure and Velocity Distributions at the End of Mold Filling Using Finite Difference Method
463(9)
8.3.10 Liquid Injection Molding Simulation (LIMS)
472(8)
8.3.11 Case Studies Using LIMS
480(16)
8.4 Filament Winding of Thermosetting Matrix Composites
496(9)
8.4.1 Introduction
496(2)
8.4.2 Process Models
498(7)
8.5 Summary and Outlook
505(1)
8.6 Exercises
505(8)
8.6.1 Questions
505(3)
8.6.2 Fill in the Blanks
508(2)
8.6.3 Problems
510(3)
A MATLAB Files 513(46)
B Solution to Example 8.13 Using FDM 559(4)
C Additional Examples with LIMS to Model Liquid Mold Filling 563(20)
Bibliography 583(28)
Index 611
Murat Sozer is Associate Professor of the Mechanical Engineering Department, Koc University, Istanbul, Turkey. His research interests are in manufacturing of composite materials and fluid dynamics. He and his co-authors S. Bickerton and S. G. Advani received The Outstanding Technical Paper Award by the Composites Manufacturing Association (CMA) of the Society of Manufacturing Engineers (SME) in recognition of outstanding contribution to the composites manufacturing body of knowledge for the technical paper at the Composites Manufacturing and Tooling 2000 Conference, Newport Beach, California, February 23-25, 2000. Before joining Koc University in 2000, he worked as a post-doctoral researcher at the Center for Composite Materials, University of Delaware between 1997 and 2000, and as a technical editor for Prentice-Hall Publishers between 1996 and 1997.

Suresh G. Advani is the George W. Laird Professor of Mechanical Engineering and Associate Director of Center for Composite Materials at the University of Delaware. He received his Bachelor of Technology Degree in Mechanical Engineering from I.I.T. Bombay in 1982 and his Ph. D in Mechanical Engineering from University of Illinois at Urbana-Champaign in 1987. His research interests are in rheology; fluid mechanics and heat transfer as applied to composite processing and alternate energy sources such as fuel cells and hydrogen storage. Advani is a Fellow of American Society of Mechanical Engineers and is the North American Editor for the journal Composites A: Applied Science and Manufacturing. Professor Advani serves also on the Scientific Advisory Committee of Computer Methods in Engineering Science and International Conference on Flow Processes in Composites Manufacturing. He is a author or co-author of over 200 archival journal papers.