Atnaujinkite slapukų nuostatas

Riemannian Geometry 3rd ed. 2016 [Kietas viršelis]

4.45/5 (12 ratings by Goodreads)
  • Formatas: Hardback, 499 pages, aukštis x plotis: 235x155 mm, weight: 9927 g, 1 Illustrations, color; 49 Illustrations, black and white; XVIII, 499 p. 50 illus., 1 illus. in color., 1 Hardback
  • Serija: Graduate Texts in Mathematics 171
  • Išleidimo metai: 31-Mar-2016
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319266527
  • ISBN-13: 9783319266527
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 499 pages, aukštis x plotis: 235x155 mm, weight: 9927 g, 1 Illustrations, color; 49 Illustrations, black and white; XVIII, 499 p. 50 illus., 1 illus. in color., 1 Hardback
  • Serija: Graduate Texts in Mathematics 171
  • Išleidimo metai: 31-Mar-2016
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319266527
  • ISBN-13: 9783319266527
Kitos knygos pagal šią temą:
Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of  Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups.





Important revisions to the third edition include:









a substantial addition of unique and enriching exercises scattered throughout the text;

inclusion of an increased number of coordinate calculations of connection and curvature;

addition of general formulas for curvature on Lie Groups and submersions;

integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger;

incorporation of several recent results about manifolds with positive curvature;

presentation of a new simplifying approach to the Bochner technique for tensors with application to bound topological quantities with general lower curvature bounds.







From reviews of the first edition:

"The book can be highly recommended to all mathematicians who want to get a more profound idea about the most interesting achievements in Riemannian geometry. It is one of the few comprehensive sources of this type."

Bernd Wegner, ZbMATH

Recenzijos

This is a very advanced textbook on metric and algebraic proofs of critical theorems in the field of metric spaces involving manifolds and other 3D structures. First, definitions, theorems, proofs, and exercises abound throughout every section of this 500 page mathematics book. The history of development in the area is comprehensive. The experts will find this a useful research tool. I recommend this book for researchers having a strong background to begin with. (Joseph J. Grenier, Amazon.com, June, 2016)

1 Riemannian Metrics 1(40)
1.1 Riemannian Manifolds and Maps
2(5)
1.2 The Volume Form
7(1)
1.3 Groups and Riemannian Manifolds
8(4)
1.3.1 Isometry Groups
8(2)
1.3.2 Lie Groups
10(1)
1.3.3 Covering Maps
11(1)
1.4 Local Representations of Metrics
12(14)
1.4.1 Einstein Summation Convention
12(2)
1.4.2 Coordinate Representations
14(1)
1.4.3 Frame Representations
15(3)
1.4.4 Polar Versus Cartesian Coordinates
18(4)
1.4.5 Doubly Warped Products
22(1)
1.4.6 Hopf Fibrations
23(3)
1.5 Some Tensor Concepts
26(6)
1.5.1 Type Change
26(3)
1.5.2 Contractions
29(1)
1.5.3 Inner Products of Tensors
30(1)
1.5.4 Positional Notation
31(1)
1.6 Exercises
32(9)
2 Derivatives 41(36)
2.1 Lie Derivatives
42(9)
2.1.1 Directional Derivatives
42(1)
2.1.2 Lie Derivatives
42(6)
2.1.3 Lie Derivatives and the Metric
48(2)
2.1.4 Lie Groups
50(1)
2.2 Connections
51(11)
2.2.1 Covariant Differentiation
51(6)
2.2.2 Covariant Derivatives of Tensors
57(5)
2.3 Natural Derivations
62(3)
2.3.1 Endomorphisms as Derivations
62(2)
2.3.2 Derivatives
64(1)
2.4 The Connection in Tensor Notation
65(5)
2.5 Exercises
70(7)
3 Curvature 77(38)
3.1 Curvature
77(13)
3.1.1 The Curvature Tensor
78(4)
3.1.2 The Curvature Operator
82(1)
3.1.3 Sectional Curvature
83(2)
3.1.4 Ricci Curvature
85(1)
3.1.5 Scalar Curvature
86(3)
3.1.6 Curvature in Local Coordinates
89(1)
3.2 The Equations of Riemannian Geometry
90(13)
3.2.1 Curvature Equations
90(5)
3.2.2 Distance Functions
95(2)
3.2.3 The Curvature Equations for Distance Functions
97(1)
3.2.4 Jacobi Fields
98(3)
3.2.5 Parallel Fields
101(1)
3.2.6 Conjugate Points
101(2)
3.3 Further Study
103(1)
3.4 Exercises
103(12)
4 Examples 115(50)
4.1 Computational Simplifications
115(1)
4.2 Warped Products
116(10)
4.2.1 Spheres
117(1)
4.2.2 Product Spheres
117(1)
4.2.3 Rotationally Symmetric Metrics
118(6)
4.2.4 Doubly Warped Products
124(1)
4.2.5 The Schwarzschild Metric
125(1)
4.3 Warped Products in General
126(12)
4.3.1 Basic Constructions
127(2)
4.3.2 General Characterization
129(3)
4.3.3 Conformal Representations of Warped Products
132(5)
4.3.4 Singular Points
137(1)
4.4 Metrics on Lie Groups
138(6)
4.4.1 Generalities on Left-invariant Metrics
138(3)
4.4.2 Hyperbolic Space as a Lie Group
141(2)
4.4.3 Berger Spheres
143(1)
4.5 Riemannian Submersions
144(9)
4.5.1 Riemannian Submersions and Curvatures
144(3)
4.5.2 Riemannian Submersions and Lie Groups
147(1)
4.5.3 Complex Projective Space
148(3)
4.5.4 Berger-Cheeger Perturbations
151(2)
4.6 Further Study
153(1)
4.7 Exercises
153(12)
5 Geodesics and Distance 165(66)
5.1 Mixed Partials
166(4)
5.2 Geodesics
170(6)
5.3 The Metric Structure of a Riemannian Manifold
176(6)
5.4 First Variation of Energy
182(4)
5.5 Riemannian Coordinates
186(10)
5.5.1 The Exponential Map
187(3)
5.5.2 Short Geodesics Are Segments
190(2)
5.5.3 Properties of Exponential Coordinates
192(4)
5.6 Riemannian Isometries
196(14)
5.6.1 Local Isometries
196(3)
5.6.2 Constant Curvature Revisited
199(2)
5.6.3 Metric Characterization of Maps
201(3)
5.6.4 The Slice Theorem
204(6)
5.7 Completeness
210(10)
5.7.1 The Hopf-Rinow Theorem
210(2)
5.7.2 Warped Product Characterization
212(3)
5.7.3 The Segment Domain
215(4)
5.7.4 The Injectivity Radius
219(1)
5.8 Further Study
220(1)
5.9 Exercises
220(11)
6 Sectional Curvature Comparison I 231(44)
6.1 The Connection Along Curves
231(10)
6.1.1 Vector Fields Along Curves
232(1)
6.1.2 Third Partials
233(3)
6.1.3 Parallel Transport
236(1)
6.1.4 Jacobi Fields
237(2)
6.1.5 Second Variation of Energy
239(2)
6.2 Nonpositive Sectional Curvature
241(9)
6.2.1 Manifolds Without Conjugate Points
241(1)
6.2.2 The Fundamental Group in Nonpositive Curvature
242(8)
6.3 Positive Curvature
250(4)
6.3.1 The Diameter Estimate
250(2)
6.3.2 The Fundamental Group in Even Dimensions
252(2)
6.4 Basic Comparison Estimates
254(5)
6.4.1 Riccati Comparison
254(3)
6.4.2 The Conjugate Radius
257(2)
6.5 More on Positive Curvature
259(7)
6.5.1 The Injectivity Radius in Even Dimensions
259(2)
6.5.2 Applications of Index Estimation
261(5)
6.6 Further Study
266(9)
6.7 Exercises
266(9)
7 Ricci Curvature Comparison 275(38)
7.1 Volume Comparison
276(17)
7.1.1 The Fundamental Equations
276(2)
7.1.2 Volume Estimation
278(2)
7.1.3 The Maximum Principle
280(4)
7.1.4 Geometric Laplacian Comparison
284(1)
7.1.5 The Segment, Poincare, and Sobolev Inequalities
285(8)
7.2 Applications of Ricci Curvature Comparison
293(5)
7.2.1 Finiteness of Fundamental Groups
293(2)
7.2.2 Maximal Diameter Rigidity
295(3)
7.3 Manifolds of Nonnegative Ricci Curvature
298(9)
7.3.1 Rays and Lines
298(3)
7.3.2 Busemann Functions
301(3)
7.3.3 Structure Results in Nonnegative Ricci Curvature
304(3)
7.4 Further Study
307(1)
7.5 Exercises
307(6)
8 Killing Fields 313(20)
8.1 Killing Fields in General
313(5)
8.2 Killing Fields in Negative Ricci Curvature
318(2)
8.3 Killing Fields in Positive Curvature
320(9)
8.4 Exercises
329(4)
9 The Bochner Technique 333(32)
9.1 Hodge Theory
334(2)
9.2 1-Forms
336(6)
9.2.1 The Bochner Formula
336(1)
9.2.2 The Vanishing Theorem
337(1)
9.2.3 The Estimation Theorem
338(4)
9.3 Lichnerowicz Laplacians
342(5)
9.3.1 The Connection Laplacian
343(1)
9.3.2 The Weitzenbock Curvature
343(2)
9.3.3 Simplification of Ric (T)
345(2)
9.4 The Bochner Technique in General
347(11)
9.4.1 Forms
347(1)
9.4.2 The Curvature Tensor
348(1)
9.4.3 Symmetric (0, 2)-Tensors
349(2)
9.4.4 Topological and Geometric Consequences
351(3)
9.4.5 Simplification of g (Ric (T) , T)
354(4)
9.5 Further Study
358(1)
9.6 Exercises
359(6)
10 Symmetric Spaces and Holonomy 365(30)
10.1 Symmetric Spaces
366(10)
10.1.1 The Homogeneous Description
366(2)
10.1.2 Isometries and Parallel Curvature
368(2)
10.1.3 The Lie Algebra Description
370(6)
10.2 Examples of Symmetric Spaces
376(7)
10.2.1 The Compact Grassmannian
377(2)
10.2.2 The Hyperbolic Grassmannian
379(1)
10.2.3 Complex Projective Space Revisited
380(2)
10.2.4 SL (n) /SO (n)
382(1)
10.2.5 Lie Groups
383(1)
10.3 Holonomy
383(9)
10.3.1 The Holonomy Group
383(3)
10.3.2 Rough Classification of Symmetric Spaces
386(1)
10.3.3 Curvature and Holonomy
387(5)
10.4 Further Study
392(1)
10.5 Exercises
392(3)
11 Convergence 395(48)
11.1 Gromov-Hausdorff Convergence
396(9)
11.1.1 Hausdorff Versus Gromov Convergence
396(5)
11.1.2 Pointed Convergence
401(1)
11.1.3 Convergence of Maps
401(1)
11.1.4 Compactness of Classes of Metric Spaces
402(3)
11.2 Holder Spaces and Schauder Estimates
405(8)
11.2.1 Holder Spaces
405(2)
11.2.2 Elliptic Estimates
407(2)
11.2.3 Harmonic Coordinates
409(4)
11.3 Norms and Convergence of Manifolds
413(13)
11.3.1 Norms of Riemannian Manifolds
413(1)
11.3.2 Convergence of Riemannian Manifolds
414(1)
11.3.3 Properties of the Norm
415(3)
11.3.4 The Harmonic Norm
418(3)
11.3.5 Compact Classes of Riemannian Manifolds
421(3)
11.3.6 Alternative Norms
424(2)
11.4 Geometric Applications
426(13)
11.4.1 Ricci Curvature
426(4)
11.4.2 Volume Pinching
430(2)
11.4.3 Sectional Curvature
432(2)
11.4.4 Lower Curvature Bounds
434(2)
11.4.5 Curvature Pinching
436(3)
11.5 Further Study
439(1)
11.6 Exercises
440(3)
12 Sectional Curvature Comparison II 443(48)
12.1 Critical Point Theory
444(5)
12.2 Distance Comparison
449(8)
12.3 Sphere Theorems
457(4)
12.4 The Soul Theorem
461(9)
12.5 Finiteness of Betti Numbers
470(10)
12.6 Homotopy Finiteness
480(8)
12.7 Further Study
488(1)
12.8 Exercises
488(3)
Bibliography 491(4)
Index 495
Peter Petersen is a Professor of Mathematics at UCLA. His current research is on various aspects of Riemannian geometry. Professor Petersen has authored two important textbooks for Springer: Riemannian Geometry in the GTM series and Linear Algebra in the UTM series.