1 Riemannian Metrics |
|
1 | (40) |
|
1.1 Riemannian Manifolds and Maps |
|
|
2 | (5) |
|
|
7 | (1) |
|
1.3 Groups and Riemannian Manifolds |
|
|
8 | (4) |
|
|
8 | (2) |
|
|
10 | (1) |
|
|
11 | (1) |
|
1.4 Local Representations of Metrics |
|
|
12 | (14) |
|
1.4.1 Einstein Summation Convention |
|
|
12 | (2) |
|
1.4.2 Coordinate Representations |
|
|
14 | (1) |
|
1.4.3 Frame Representations |
|
|
15 | (3) |
|
1.4.4 Polar Versus Cartesian Coordinates |
|
|
18 | (4) |
|
1.4.5 Doubly Warped Products |
|
|
22 | (1) |
|
|
23 | (3) |
|
|
26 | (6) |
|
|
26 | (3) |
|
|
29 | (1) |
|
1.5.3 Inner Products of Tensors |
|
|
30 | (1) |
|
1.5.4 Positional Notation |
|
|
31 | (1) |
|
|
32 | (9) |
2 Derivatives |
|
41 | (36) |
|
|
42 | (9) |
|
2.1.1 Directional Derivatives |
|
|
42 | (1) |
|
|
42 | (6) |
|
2.1.3 Lie Derivatives and the Metric |
|
|
48 | (2) |
|
|
50 | (1) |
|
|
51 | (11) |
|
2.2.1 Covariant Differentiation |
|
|
51 | (6) |
|
2.2.2 Covariant Derivatives of Tensors |
|
|
57 | (5) |
|
|
62 | (3) |
|
2.3.1 Endomorphisms as Derivations |
|
|
62 | (2) |
|
|
64 | (1) |
|
2.4 The Connection in Tensor Notation |
|
|
65 | (5) |
|
|
70 | (7) |
3 Curvature |
|
77 | (38) |
|
|
77 | (13) |
|
3.1.1 The Curvature Tensor |
|
|
78 | (4) |
|
3.1.2 The Curvature Operator |
|
|
82 | (1) |
|
3.1.3 Sectional Curvature |
|
|
83 | (2) |
|
|
85 | (1) |
|
|
86 | (3) |
|
3.1.6 Curvature in Local Coordinates |
|
|
89 | (1) |
|
3.2 The Equations of Riemannian Geometry |
|
|
90 | (13) |
|
3.2.1 Curvature Equations |
|
|
90 | (5) |
|
|
95 | (2) |
|
3.2.3 The Curvature Equations for Distance Functions |
|
|
97 | (1) |
|
|
98 | (3) |
|
|
101 | (1) |
|
|
101 | (2) |
|
|
103 | (1) |
|
|
103 | (12) |
4 Examples |
|
115 | (50) |
|
4.1 Computational Simplifications |
|
|
115 | (1) |
|
|
116 | (10) |
|
|
117 | (1) |
|
|
117 | (1) |
|
4.2.3 Rotationally Symmetric Metrics |
|
|
118 | (6) |
|
4.2.4 Doubly Warped Products |
|
|
124 | (1) |
|
4.2.5 The Schwarzschild Metric |
|
|
125 | (1) |
|
4.3 Warped Products in General |
|
|
126 | (12) |
|
4.3.1 Basic Constructions |
|
|
127 | (2) |
|
4.3.2 General Characterization |
|
|
129 | (3) |
|
4.3.3 Conformal Representations of Warped Products |
|
|
132 | (5) |
|
|
137 | (1) |
|
4.4 Metrics on Lie Groups |
|
|
138 | (6) |
|
4.4.1 Generalities on Left-invariant Metrics |
|
|
138 | (3) |
|
4.4.2 Hyperbolic Space as a Lie Group |
|
|
141 | (2) |
|
|
143 | (1) |
|
4.5 Riemannian Submersions |
|
|
144 | (9) |
|
4.5.1 Riemannian Submersions and Curvatures |
|
|
144 | (3) |
|
4.5.2 Riemannian Submersions and Lie Groups |
|
|
147 | (1) |
|
4.5.3 Complex Projective Space |
|
|
148 | (3) |
|
4.5.4 Berger-Cheeger Perturbations |
|
|
151 | (2) |
|
|
153 | (1) |
|
|
153 | (12) |
5 Geodesics and Distance |
|
165 | (66) |
|
|
166 | (4) |
|
|
170 | (6) |
|
5.3 The Metric Structure of a Riemannian Manifold |
|
|
176 | (6) |
|
5.4 First Variation of Energy |
|
|
182 | (4) |
|
5.5 Riemannian Coordinates |
|
|
186 | (10) |
|
5.5.1 The Exponential Map |
|
|
187 | (3) |
|
5.5.2 Short Geodesics Are Segments |
|
|
190 | (2) |
|
5.5.3 Properties of Exponential Coordinates |
|
|
192 | (4) |
|
5.6 Riemannian Isometries |
|
|
196 | (14) |
|
|
196 | (3) |
|
5.6.2 Constant Curvature Revisited |
|
|
199 | (2) |
|
5.6.3 Metric Characterization of Maps |
|
|
201 | (3) |
|
|
204 | (6) |
|
|
210 | (10) |
|
5.7.1 The Hopf-Rinow Theorem |
|
|
210 | (2) |
|
5.7.2 Warped Product Characterization |
|
|
212 | (3) |
|
|
215 | (4) |
|
5.7.4 The Injectivity Radius |
|
|
219 | (1) |
|
|
220 | (1) |
|
|
220 | (11) |
6 Sectional Curvature Comparison I |
|
231 | (44) |
|
6.1 The Connection Along Curves |
|
|
231 | (10) |
|
6.1.1 Vector Fields Along Curves |
|
|
232 | (1) |
|
|
233 | (3) |
|
|
236 | (1) |
|
|
237 | (2) |
|
6.1.5 Second Variation of Energy |
|
|
239 | (2) |
|
6.2 Nonpositive Sectional Curvature |
|
|
241 | (9) |
|
6.2.1 Manifolds Without Conjugate Points |
|
|
241 | (1) |
|
6.2.2 The Fundamental Group in Nonpositive Curvature |
|
|
242 | (8) |
|
|
250 | (4) |
|
6.3.1 The Diameter Estimate |
|
|
250 | (2) |
|
6.3.2 The Fundamental Group in Even Dimensions |
|
|
252 | (2) |
|
6.4 Basic Comparison Estimates |
|
|
254 | (5) |
|
|
254 | (3) |
|
6.4.2 The Conjugate Radius |
|
|
257 | (2) |
|
6.5 More on Positive Curvature |
|
|
259 | (7) |
|
6.5.1 The Injectivity Radius in Even Dimensions |
|
|
259 | (2) |
|
6.5.2 Applications of Index Estimation |
|
|
261 | (5) |
|
|
266 | (9) |
|
|
266 | (9) |
7 Ricci Curvature Comparison |
|
275 | (38) |
|
|
276 | (17) |
|
7.1.1 The Fundamental Equations |
|
|
276 | (2) |
|
|
278 | (2) |
|
7.1.3 The Maximum Principle |
|
|
280 | (4) |
|
7.1.4 Geometric Laplacian Comparison |
|
|
284 | (1) |
|
7.1.5 The Segment, Poincare, and Sobolev Inequalities |
|
|
285 | (8) |
|
7.2 Applications of Ricci Curvature Comparison |
|
|
293 | (5) |
|
7.2.1 Finiteness of Fundamental Groups |
|
|
293 | (2) |
|
7.2.2 Maximal Diameter Rigidity |
|
|
295 | (3) |
|
7.3 Manifolds of Nonnegative Ricci Curvature |
|
|
298 | (9) |
|
|
298 | (3) |
|
|
301 | (3) |
|
7.3.3 Structure Results in Nonnegative Ricci Curvature |
|
|
304 | (3) |
|
|
307 | (1) |
|
|
307 | (6) |
8 Killing Fields |
|
313 | (20) |
|
8.1 Killing Fields in General |
|
|
313 | (5) |
|
8.2 Killing Fields in Negative Ricci Curvature |
|
|
318 | (2) |
|
8.3 Killing Fields in Positive Curvature |
|
|
320 | (9) |
|
|
329 | (4) |
9 The Bochner Technique |
|
333 | (32) |
|
|
334 | (2) |
|
|
336 | (6) |
|
9.2.1 The Bochner Formula |
|
|
336 | (1) |
|
9.2.2 The Vanishing Theorem |
|
|
337 | (1) |
|
9.2.3 The Estimation Theorem |
|
|
338 | (4) |
|
9.3 Lichnerowicz Laplacians |
|
|
342 | (5) |
|
9.3.1 The Connection Laplacian |
|
|
343 | (1) |
|
9.3.2 The Weitzenbock Curvature |
|
|
343 | (2) |
|
9.3.3 Simplification of Ric (T) |
|
|
345 | (2) |
|
9.4 The Bochner Technique in General |
|
|
347 | (11) |
|
|
347 | (1) |
|
9.4.2 The Curvature Tensor |
|
|
348 | (1) |
|
9.4.3 Symmetric (0, 2)-Tensors |
|
|
349 | (2) |
|
9.4.4 Topological and Geometric Consequences |
|
|
351 | (3) |
|
9.4.5 Simplification of g (Ric (T) , T) |
|
|
354 | (4) |
|
|
358 | (1) |
|
|
359 | (6) |
10 Symmetric Spaces and Holonomy |
|
365 | (30) |
|
|
366 | (10) |
|
10.1.1 The Homogeneous Description |
|
|
366 | (2) |
|
10.1.2 Isometries and Parallel Curvature |
|
|
368 | (2) |
|
10.1.3 The Lie Algebra Description |
|
|
370 | (6) |
|
10.2 Examples of Symmetric Spaces |
|
|
376 | (7) |
|
10.2.1 The Compact Grassmannian |
|
|
377 | (2) |
|
10.2.2 The Hyperbolic Grassmannian |
|
|
379 | (1) |
|
10.2.3 Complex Projective Space Revisited |
|
|
380 | (2) |
|
|
382 | (1) |
|
|
383 | (1) |
|
|
383 | (9) |
|
10.3.1 The Holonomy Group |
|
|
383 | (3) |
|
10.3.2 Rough Classification of Symmetric Spaces |
|
|
386 | (1) |
|
10.3.3 Curvature and Holonomy |
|
|
387 | (5) |
|
|
392 | (1) |
|
|
392 | (3) |
11 Convergence |
|
395 | (48) |
|
11.1 Gromov-Hausdorff Convergence |
|
|
396 | (9) |
|
11.1.1 Hausdorff Versus Gromov Convergence |
|
|
396 | (5) |
|
11.1.2 Pointed Convergence |
|
|
401 | (1) |
|
11.1.3 Convergence of Maps |
|
|
401 | (1) |
|
11.1.4 Compactness of Classes of Metric Spaces |
|
|
402 | (3) |
|
11.2 Holder Spaces and Schauder Estimates |
|
|
405 | (8) |
|
|
405 | (2) |
|
11.2.2 Elliptic Estimates |
|
|
407 | (2) |
|
11.2.3 Harmonic Coordinates |
|
|
409 | (4) |
|
11.3 Norms and Convergence of Manifolds |
|
|
413 | (13) |
|
11.3.1 Norms of Riemannian Manifolds |
|
|
413 | (1) |
|
11.3.2 Convergence of Riemannian Manifolds |
|
|
414 | (1) |
|
11.3.3 Properties of the Norm |
|
|
415 | (3) |
|
|
418 | (3) |
|
11.3.5 Compact Classes of Riemannian Manifolds |
|
|
421 | (3) |
|
|
424 | (2) |
|
11.4 Geometric Applications |
|
|
426 | (13) |
|
|
426 | (4) |
|
|
430 | (2) |
|
11.4.3 Sectional Curvature |
|
|
432 | (2) |
|
11.4.4 Lower Curvature Bounds |
|
|
434 | (2) |
|
11.4.5 Curvature Pinching |
|
|
436 | (3) |
|
|
439 | (1) |
|
|
440 | (3) |
12 Sectional Curvature Comparison II |
|
443 | (48) |
|
12.1 Critical Point Theory |
|
|
444 | (5) |
|
|
449 | (8) |
|
|
457 | (4) |
|
|
461 | (9) |
|
12.5 Finiteness of Betti Numbers |
|
|
470 | (10) |
|
|
480 | (8) |
|
|
488 | (1) |
|
|
488 | (3) |
Bibliography |
|
491 | (4) |
Index |
|
495 | |