Atnaujinkite slapukų nuostatas

Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis 1st ed. 2015 [Kietas viršelis]

  • Formatas: Hardback, 176 pages, aukštis x plotis: 235x155 mm, weight: 4624 g, 40 Illustrations, color; 14 Illustrations, black and white; XXII, 176 p. 54 illus., 40 illus. in color., 1 Hardback
  • Serija: Socio-Affective Computing 1
  • Išleidimo metai: 18-Dec-2015
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319236539
  • ISBN-13: 9783319236537
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 176 pages, aukštis x plotis: 235x155 mm, weight: 4624 g, 40 Illustrations, color; 14 Illustrations, black and white; XXII, 176 p. 54 illus., 40 illus. in color., 1 Hardback
  • Serija: Socio-Affective Computing 1
  • Išleidimo metai: 18-Dec-2015
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319236539
  • ISBN-13: 9783319236537
Kitos knygos pagal šią temą:
?This volume is a knowledge-based approach to concept-level sentiment analysis at the crossroads between affective computing, information extraction, and common-sense computing, which exploits both computer and social sciences to better interpret and process information on the Web.
Concept-level sentiment analysis goes beyond a mere word-level analysis of text in order to enable a more efficient passage from (unstructured) textual information to (structured) machine-processable data, in potentially any domain.

Readers will discover the following key novelties, that make this approach so unique and avant-garde, being reviewed and discussed:
•    Sentic Computing's multi-disciplinary approach to sentiment analysis-evidenced by the concomitant use of AI and Semantic Web techniques, for knowledge representation and inference
•    Sentic Computing’s shift from syntax to semantics-enabled by the adoption of the bag-of-concepts model instead of simply counting word co-occurrence frequencies in text
•    Sentic Computing's shift from statistics to linguistics-implemented by allowing sentiments to flow from concept to concept based on the dependency relation between clauses

This volume is the first in the Series Socio-Affective Computing edited by Dr Amir Hussain and Dr Erik Cambria and will be of interest to researchers in the fields of socially intelligent, affective and multimodal human-machine interaction and systems.
1 Introduction
1(22)
1.1 Opinion Mining and Sentiment Analysis
3(4)
1.1.1 From Heuristics to Discourse Structure
4(1)
1.1.2 From Coarse- to Fine-Grained
5(1)
1.1.3 From Keywords to Concepts
6(1)
1.2 Towards Machines with Common Sense
7(10)
1.2.1 The Importance of Common Sense
8(1)
1.2.2 Knowledge Representation
9(4)
1.2.3 Common-Sense Reasoning
13(4)
1.3 Sentic Computing
17(6)
1.3.1 From Mono- to Multi-Disciplinarity
21(1)
1.3.2 From Syntax to Semantics
21(1)
1.3.3 From Statistics to Linguistics
21(2)
2 SenticNet
23(50)
2.1 Knowledge Acquisition
25(11)
2.1.1 Open Mind Common Sense
26(1)
2.1.2 WordNet-Affect
27(2)
2.1.3 GECKA
29(7)
2.2 Knowledge Representation
36(15)
2.2.1 AffectNet Graph
37(4)
2.2.2 AffectNet Matrix
41(2)
2.2.3 AffectiveSpace
43(8)
2.3 Knowledge-Based Reasoning
51(22)
2.3.1 Sentic Activation
52(4)
2.3.2 Hourglass Model
56(7)
2.3.3 Sentic Neurons
63(10)
3 Sentic Patterns
73(34)
3.1 Semantic Parsing
74(6)
3.1.1 Pre-processing
74(1)
3.1.2 Concept Extraction
74(4)
3.1.3 Similarity Detection
78(2)
3.2 Linguistic Rules
80(18)
3.2.1 General Rules
82(4)
3.2.2 Dependency Rules
86(10)
3.2.3 Activation of Rules
96(2)
3.3 ELM Classifier
98(4)
3.3.1 Datasets Used
99(1)
3.3.2 Feature Set
100(1)
3.3.3 Classification
100(2)
3.4 Evaluation
102(5)
3.4.1 Experimental Results
102(1)
3.4.2 Discussion
103(4)
4 Sentic Applications
107(48)
4.1 Development of Social Web Systems
109(20)
4.1.1 Troll Filtering
109(3)
4.1.2 Social Media Marketing
112(7)
4.1.3 Sentic Album
119(10)
4.2 Development of HCI Systems
129(18)
4.2.1 Sentic Blending
130(11)
4.2.2 Sentic Chat
141(2)
4.2.3 Sentic Corner
143(4)
4.3 Development of E-Health Systems
147(8)
4.3.1 Crowd Validation
148(2)
4.3.2 SenticPROMs
150(5)
5 Conclusion
155(6)
5.1 Summary of Contributions
155(2)
5.1.1 Models
156(1)
5.1.2 Techniques
156(1)
5.1.3 Tools
157(1)
5.1.4 Applications
157(1)
5.2 Limitations and Future Work
157(4)
5.2.1 Limitations
158(1)
5.2.2 Future Work
159(2)
References 161(14)
Index 175