Atnaujinkite slapukų nuostatas

El. knyga: Sustainable and Circular Management of Resources and Waste Towards a Green Deal

Edited by (Head of Division, Biogenic Raw Materials Mineral and Energy Economy Research Institute, Poland), Edited by (Emeritus Professor and Former Dean, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 10-Feb-2023
  • Leidėjas: Elsevier - Health Sciences Division
  • Kalba: eng
  • ISBN-13: 9780323952798
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 10-Feb-2023
  • Leidėjas: Elsevier - Health Sciences Division
  • Kalba: eng
  • ISBN-13: 9780323952798
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Sustainable and Circular Management of Resources and Waste Towards a Green Deal highlights the importance of resource recovery, phosphorus management, climate action, clean energy transition, and a circular economy. The world is facing significant challenges, including climate disruption, environmental changes, pollution, and population explosion. Sustainable management of finite natural resources within the carrying capacity of the bio-geo-hydrosphere is the crux of transforming the global economy for a sustainable future. Moreover, keeping raw materials in circulation as long as possible and minimizing the amount of waste generated has grown in significance as a part of transitioning to a circular economy (CE) model.
  • Introduces innovative solutions in green energy transition
  • Provides case studies as examples of a circular economy implementation in selected sectors of the economy, including water and wastewater, raw materials, and construction
  • Suggests actions to counteract climate change and its consequences for people and the planet
List of contributors
xiii
Preface xvii
Acknowledgments xix
Section 1 Strategies for implementation of Green Deal
1 Achieving sustainable development goals via green deal strategies
3(22)
Majeti Narasimha Vara Prasad
Marzena Smol
Helena Freitas
1.1 Introduction
3(2)
1.2 The 2030 Agenda
5(1)
1.3 The European Green Deal ---driving force of a more cohesive continent
6(1)
1.4 Europe in the leadership of the environmental agenda
7(1)
1.5 The opportunity generated by the new European agreement
8(1)
1.6 Two good reasons to congratulate the European Commission
9(4)
1.7 Greywater treatment in constructed wetlands
13(1)
1.8 Grey water quantity
13(1)
1.9 Constructed wetlands
14(4)
1.9.1 Constructed wetlands in greywater treatment and their classification
14(1)
1.9.2 Green walls and green roof
15(3)
1.10 Act now campaign of the United Nations toward sustainable lifestyles
18(7)
References
21(2)
Further reading
23(2)
2 Farm to fork: sustainable agrifood systems
25(14)
Boda Ravi Kiran
Majeti Narasimha Vara Prasad
S. Venkata Mohan
2.1 Introduction
25(1)
2.2 Journey from Farm to Fork
25(2)
2.2.1 European Green Deal
26(1)
2.2.2 Need for sustainable and resilient food systems
27(1)
2.3 Economic, social, and environmental impacts
27(2)
2.3.1 Impacts of COVID-19 on food supply chain
28(1)
2.4 Redesigning agriculture for nature and nutrition
29(5)
2.4.1 Monocropping to multicropping: crop diversification as a resilient strategy
29(1)
2.4.2 Genomics in crop production
29(1)
2.4.3 Internet of Things: smart irrigation systems
30(1)
2.4.4 Nature-based solutions
31(1)
2.4.5 Reducing water footprint in agriculture
32(1)
2.4.6 Policy-based modeling
33(1)
2.4.7 Green deals: circular economy practices
34(1)
2.5 Global transition to sustainable food systems
34(1)
2.6 Policy objectives versus legal actions
34(1)
2.7 Conclusion
35(4)
Acknowledgments
35(1)
References
35(4)
3 Global directions for the green deal strategies---Americas, Europe, Australia, Asia, and Africa
39(10)
Marzena Smol
3.1 Introduction
39(1)
3.2 Materials and methods
40(1)
3.3 Results and discussion
40(5)
3.3.1 America
40(1)
3.3.2 Europe
41(3)
3.3.3 Australia
44(1)
3.3.4 Asia
44(1)
3.3.5 Africa
45(1)
3.4 Conclusions
45(4)
Acknowledgments
45(1)
References
45(4)
Section 2 Circular economy
4 Circular economy in Green Deal strategies
49(16)
Florin-Constantin Mihai
Simona-Roxana Ulman
4.1 Introduction
49(1)
4.2 Circular Economy in EU Green Deal
50(1)
4.3 Strategic Principles of Circular Economy in Circular Economy Action Plan
50(4)
4.4 State of fact at the macrolevel
54(1)
4.5 Strategic principles of circular economy in practice: the microlevel
55(1)
4.6 Best Practices in the Case of Groupe Renault, "Pioneer of the Circular Economy"
56(1)
4.7 Circular economy in Green Deal strategies beyond the EU
57(1)
4.8 Greenwashing practices and related threats to circular economy and Green Deal policies
58(2)
4.9 Conclusions and future perspectives
60(5)
References
60(5)
5 Circular economy---the new innovation wave
65(14)
Marzena Smol
Paulina Marcinek
5.1 Introduction
65(1)
5.2 Materials and methods
65(1)
5.3 Results
66(10)
5.3.1 Innovative approach in selected strategic documents regarding the circular economy
66(4)
5.3.2 Initiatives in Poland implementing the circular economy idea
70(6)
5.4 Conclusions
76(3)
Funding
76(1)
References
76(3)
6 Circular economy from a water and wastewater management perspective
79(14)
Bimastyaji Surya Ramadan
Machmuddin Fitra Miftahadi
I Wayan Koko Suryawan
Zhiyi Liang
Jiawen Zhang
Iva Yenis Septiariva
Yudha Gusti Wibowo
Toru Matsumoto
6.1 Introduction
79(1)
6.2 The concept of community-based reclaimed water
80(1)
6.3 Community-based reclaimed water and circular economy
81(1)
6.4 Community-based reclaimed water system overview and consideration
81(5)
6.4.1 Conventional versus advanced wastewater treatment system
81(2)
6.4.2 Conventional versus advanced sludge treatment system
83(1)
6.4.3 Traditional versus green-gray infrastructure system
84(1)
6.4.4 Energy recovery from wastewater
84(1)
6.4.5 Energy recovery from sludge
85(1)
6.4.6 Social and public acceptance
86(1)
6.5 Recommendation for further studies
86(2)
6.6 Conclusions
88(5)
References
88(5)
7 Mine waste: contributions to the circular economy
93(12)
Fabio Carvalho Nunes
Lucio Cunha Oliveira
Lander de Jesus Alves
Majeti Narasimha Vara Prasad
Jose Angelo Sebastiao
Araujo dos Anjos
7.1 Introduction
93(1)
7.2 Mining waste
94(2)
7.3 Mining waste management for circular economy
96(3)
7.3.1 Restoration and reestablishment uses
97(2)
7.4 Circular economy in mining: case studies and sector challenges
99(2)
7.5 Epilogue
101(4)
References
102(3)
8 Waste to energy and circular economy: the case of anaerobic digestion
105(12)
Jouni Havukainen
Elina Dace
8.1 Introduction
105(1)
8.2 Anaerobic digestion at an intersection of waste management, energy, and agricultural sectors
105(3)
8.2.1 Waste management
106(1)
8.2.2 Energy
107(1)
8.2.3 Agricultural sector
107(1)
8.3 Anaerobic digestion
108(5)
8.3.1 Feedstock
108(1)
8.3.2 Biogas production and utilization
109(1)
8.3.3 Digestate valorization
110(3)
8.4 Environmental performance
113(1)
8.5 Conclusions
113(4)
Acknowledgments
113(1)
References
113(4)
9 Food waste management in Thailand for sustainable development
117(20)
Ponlakit Jitto
Woranan Nakbanpote
9.1 Introduction
117(1)
9.2 Food waste in Thailand
117(2)
9.3 Appropriate food waste treatment guidelines
119(10)
9.3.1 Biodiesel
121(1)
9.3.2 Incineration
121(1)
9.3.3 Pyrolysis and gasification
121(1)
9.3.4 Value-added products and materials
122(1)
9.3.5 Biogas, biohydrogen, and bioethanol
123(1)
9.3.6 Microbial fuel cell
124(1)
9.3.7 Composting and biofertilizer
125(3)
9.3.8 Animal feed
128(1)
9.4 Food waste management: a Thai perspective
129(3)
9.4.1 Community engagement management planning
129(1)
9.4.2 Food waste management in hospitality sector
130(1)
9.4.3 Startup business model management
131(1)
9.5 Conclusions
132(5)
Acknowledgments
132(1)
References
132(5)
10 Sustainable use of construction and demolition wastes in a circular economy perspective
137(14)
Eugeniusz Koda
Anna Podlasek
10.1 Introduction
137(1)
10.2 Construction and demolition wastes---definition, classification, and composition
138(1)
10.3 Current state of construction and demolition wastes management in European Union
139(1)
10.4 Construction and demolition wastes management toward circular economy
140(4)
10.5 Practical example of construction and demolition wastes reuse at the landfill site
144(2)
10.5.1 Site description---Radiowo landfill
144(1)
10.5.2 Recovery and utilization of wastes in the Radiowo landfill
145(1)
10.6 Conclusion
146(5)
References
146(5)
Section 3 Sludge management --- resource recovery
11 Biofiltration as an ecological method of removing sewage sludge odors by solar drying
151(12)
Anna Kwarciak-Koziowska
Monika Gatwa-Widera
11.1 Sewage sludge and solar sludge dryers
151(2)
11.2 Biofiltration
153(3)
11.3 Biofiltration as an ecological method of removing sewage sludge odors by solar drying---own research
156(3)
11.4 Summary
159(4)
Acknowledgments
160(1)
References
160(3)
12 Sustainable/integrated/sewage sludge management
163(20)
Anna Grobelak
Ludovico Spinosa
12.1 Introduction
163(2)
12.1.1 Sustainability and integration
163(1)
12.1.2 General conceptualization
164(1)
12.2 Local options as determinants for wastewater treatment sequence selection
165(1)
12.3 Strategies to maximize recoveries
166(3)
12.3.1 General assumptions and possibilities
166(1)
12.3.2 Phosphorus recovery and organic recycling
166(1)
12.3.3 Energy and carbon
167(2)
12.4 Technical aspects
169(1)
12.4.1 Reduction of nuisances
169(1)
12.4.2 Reduction of volume
169(1)
12.5 Governance aspects
169(5)
12.5.1 Regulation
170(1)
12.5.2 Standardization of procedures
170(3)
12.5.3 Access barriers
173(1)
12.6 Sustainability and circular economy as fundamental principles
174(3)
12.6.1 Sustainability
174(1)
12.6.2 Circular economy
175(1)
12.6.3 Boundary conditions
176(1)
12.7 Digitalization as a management tool
177(1)
12.8 Summary
178(5)
Acknowledgments
179(1)
References
179(2)
Further reading
181(2)
13 Bioleaching of heavy metals from a contaminated soil using bacteria from wastewater sludge
183(16)
Jianfeng Bai
Shijie Zhang
Weihua Gu
Di Gu
Bin Dong
Jing Zhao
Jun Hu
Jianmeng Chen
13.1 Introduction
183(4)
13.1.1 Status of soil heavy metal pollution in China
183(1)
13.1.2 Harmfulness of soil heavy metal pollution
183(1)
13.1.3 Remediation technologies of heavy metal in soil
184(2)
13.1.4 The concept of bioleaching technology and the types of leaching bacteria
186(1)
13.1.5 Research status of bioleaching technology
187(1)
13.2 Source and screening method of strain
187(4)
13.2.1 Strain type
187(2)
13.2.2 Bacterial source
189(1)
13.2.3 Bacteria screening, isolation, and identification
190(1)
13.3 Influencing factors of bioleaching heavy metals in soil
191(2)
13.3.1 Microorganism type
191(1)
13.3.2 Solid concentration
191(1)
13.3.3 Initial pH
191(1)
13.3.4 Oxygen and carbon dioxide concentrations
192(1)
13.3.5 Nutrients in soil
192(1)
13.3.6 Oxidation-reduction potential
192(1)
13.3.7 Inhibitor
192(1)
13.3.8 Temperature
193(1)
13.3.9 Heavy metal type
193(1)
13.4 Analysis of bioleaching mechanism
193(2)
13.4.1 The principle of bioleaching heavy metals in soil
193(2)
13.4.2 The principle of fungal leaching of heavy metals in soil
195(1)
13.5 Insufficiency of bioleaching heavy metals in soil
195(1)
13.5.1 Loss of nutrients
195(1)
13.5.2 Inhibition of heavy metals
195(1)
13.6 Conclusion and outlook
196(3)
Acknowledgments
196(1)
References
196(3)
14 Sewage sludge valorization in the context of resource recovery
199(14)
Dominika Szotdrowska
Marzena Smol
Dariusz Wloka
14.1 Introduction
199(1)
14.2 Materials and methods
200(1)
14.3 Directions of sewage sludge management
200(1)
14.4 Sewage sludge treatment methods
201(4)
14.4.1 Biological methods of sewage sludge treatment
201(3)
14.4.2 Chemical and thermal methods of sewage sludge treatment
204(1)
14.5 Resource recovery from sewage sludge
205(4)
14.5.1 Energy recovery
205(1)
14.5.2 Nutrient's recovery
206(2)
14.5.3 The comparative analysis of pros and cons of different sewage sludge treatment technologies
208(1)
14.6 Conclusions
209(4)
References
209(4)
Section 4 Phosphorus management
15 Importance of phosphorus raw materials in Green Deal strategies
213(12)
Patricia N. Omo-Okoro
Christopher J. Curtis
Kriveshini Pillay
15.1 Introduction
213(1)
15.2 Methods
214(2)
15.2.1 Different methods for Struvite production including benefits and drawbacks
214(2)
15.2.2 Hygienization
216(1)
15.2.3 Sewage sludge ash
216(1)
15.3 Results and discussion
216(5)
15.3.1 Environmental impacts associated with phosphorus
216(1)
15.3.2 Phosphorus recovery through Struvite production
217(2)
15.3.3 Phosphorus recovery through hygienization and sewage sludge combustion
219(1)
15.3.4 Vermicomposting as a source of phosphorus
220(1)
15.4 Conclusions
221(1)
15.5 Funding
221(4)
References
221(4)
16 Regional strategies for the management of phosphorus
225(10)
Ewa Wisniowska
16.1 Introduction
225(2)
16.2 Strategy for the management of raw phosphorus materials in the European Union
227(3)
16.3 Strategy for the management of raw phosphorus materials in North America
230(1)
16.4 Strategy for the management of raw phosphorus materials in Asia-Pacific
230(2)
16.5 Conclusions
232(3)
References
232(3)
17 Integrated Nutrient Management as a driving force for sustainable use of phosphorus
235(12)
Paulo S. Pavinato
Ciro A. Rosolem
17.1 Introduction
235(1)
17.2 Phosphorus dynamics in the soil
236(2)
17.3 Rock phosphate sources and vulnerability
238(1)
17.4 Strategies for improving P-use efficiency
238(5)
17.4.1 Adjust soil pH
238(1)
17.4.2 Crop rotation and recycle
239(1)
17.4.3 Crop breeding for adapted varieties
240(1)
17.4.4 Crop inoculation or association with P-solubilizing microorganisms
240(1)
17.4.5 Access to fertilizers and use of modern Pfertilizers
241(1)
17.4.6 Adoption of 4R nutrient stewardship
242(1)
17.4.7 Minimize or cease Ploss by erosion/runoff
242(1)
17.5 Conclusions
243(4)
Funding
243(1)
References
243(4)
18 Phosphorus raw materials in sustainable agriculture
247(10)
Dominika Szotdrowska
Marzena Smol
18.1 Introduction
247(1)
18.2 Materials and methods
247(1)
18.3 Phosphorus sources
248(4)
18.3.1 Primary sources
248(1)
18.3.2 Secondary sources
248(4)
18.4 Phosphorus flow
252(1)
18.5 Phosphorus availability
253(1)
18.6 Conclusions
253(4)
Funding
253(1)
References
254(3)
19 Phosphorus-driven eutrophication mitigation strategies
257(12)
Michat Preisner
19.1 Introduction: the biogenic role of phosphorus in water ecosystems
257(2)
19.2 Legal measures to mitigate eutrophication caused by Pdischarged loads
259(2)
19.3 The efficiency of eutrophication mitigation strategies---case studies of Ploads reductions
261(4)
19.3.1 European Union
262(1)
19.3.2 Baltic Sea catchment
262(1)
19.3.3 Switzerland and the Alpine Region
263(1)
19.3.4 China
264(1)
19.3.5 United States of America
264(1)
19.4 Limiting agricultural P sources
265(1)
19.5 Summary and outlook
265(4)
References
266(3)
20 Phosphorus recovery---recent developments and case studies
269(16)
Roberto Canziani
Gaia Boniardi
Andrea Turolla
20.1 Phosphorus supply from conventional sources
269(1)
20.2 Phosphorus recovery from secondary sources
270(1)
20.3 Rationale
270(2)
20.4 Phosphorus recovery from aqueous phase
272(1)
20.4.1 Case studies
273(1)
20.5 Phosphorus recovery from sewage sludge and derived ash
273(6)
20.5.1 Case studies
274(4)
20.5.2 Recent developments of emerging technologies
278(1)
20.6 Conclusions
279(6)
References
279(6)
Section 5 Climate action
21 Action toward carbon neutrality---essential elements of the Green Deal
285(12)
Julia Tanzer
Ludwig Hermann
21.1 Introduction
285(1)
21.2 Current greenhouse gas emissions
285(1)
21.3 Key measures to reach carbon neutrality
286(3)
21.4 Measures implemented or proposed in current climate policy
289(2)
21.5 Barriers against effective climate action
291(3)
21.6 The way forward
294(3)
Funding
295(1)
References
295(2)
22 Water and climate change from the regional, national, and international perspective
297(12)
Amgalan Magsar
Nagamani Katukotta
Mohammad Suhail Meer
Bimastyaji Surya Ramadan
Toru Matsumoto
22.1 Introduction
297(1)
22.2 Water and climate change: case study in Asian countries
298(1)
22.2.1 The physical or environmental impact of climate change
298(1)
22.2.2 The socioeconomic impact of climate change
299(1)
22.3 Recent practices to adapt and mitigate the climate change
299(2)
22.4 Climate change variability and water harvesting and management
301(1)
22.5 Impact of climate change on hydrological processes
302(2)
22.6 Impact of regional land use land cover (LULC) change on hydrological process
304(1)
22.7 Climate change and education for environmental sustainability
305(1)
22.8 Conclusion
305(4)
References
306(3)
23 Water resources and climate change: regional, national and international perspective
309(28)
Ahmad El Moll
23.1 Introduction
309(1)
23.2 Water sources
309(4)
23.2.1 Interactions between the atmosphere and hydrosphere
310(1)
23.2.2 Changes in the chemistry of the atmosphere---hydrosphere
310(1)
23.2.3 The water cycle and Earth's climate (two types of water cycles)
311(2)
23.3 Impact of human activities on the hydrosphere---interactions between climate change and water cycle
313(5)
23.3.1 Human activities altering Earth's climate which produces further changes in the water cycle
314(1)
23.3.2 Climate change: causes and consequences
315(1)
23.3.3 Evapotranspiration process: the dominant role of local climate
316(2)
23.4 Soil and climate change-biosphere---atmosphere interactions
318(4)
23.4.1 The role of Earth's soil in the fight against climate change
320(1)
23.4.2 The role of the soils in the carbon cycle
321(1)
23.4.3 Soils in the hydrological cycle: essential role of the soil in the water cycle
321(1)
23.5 Land use/land cover and climate change interaction
322(2)
23.5.1 Land cover and changes in land use
323(1)
23.5.2 Climate and land use effects on regional hydrologic processes
324(1)
23.5.3 Impacts of land use and climate changes on water resources
324(1)
23.6 Drought and climate change impacts on water resources
324(3)
23.6.1 Drought and water scarcity as an impact of climate change
325(1)
23.6.2 Scarcity of water resources in MENA region
326(1)
23.7 Protect of water resources in MENA region: transition to a circular economy
327(6)
23.7.1 Wetland hydrobiogeochemistry and climate change
328(1)
23.7.2 The circular economy applies on water resources---nature-based solutions as best solutions to tackle climate change
328(1)
23.7.3 Nature-based solutions contribute to water management
328(2)
23.7.4 Improved the water resources management using constructed wetland for treatment of wastewater
330(1)
23.7.5 Water resources in the Eastern Mediterranean region: case of Lebanon
330(1)
23.7.6 Managing the water resources under changing climate and land use: perspectives of wastewater reuse in the Mediterranean region
331(1)
23.7.7 Agroecology to tackle climate change and water shortages in the world
332(1)
23.8 Conclusion
333(4)
References
334(2)
Further reading
336(1)
24 Environmental footprint as a tool to measure climate neutrality activities
337(12)
Julia Tanzer
24.1 Introduction
337(1)
24.2 Methods to calculate the carbon footprint
338(3)
24.2.1 The ecological footprint
338(1)
24.2.2 Life cycle assessment
339(1)
24.2.3 Other standards and guidance
340(1)
24.3 Open issues, criticism, and needs for further research
341(4)
24.3.1 Lack of a common definition
341(1)
24.3.2 Methodological shortcomings
342(2)
24.3.3 Data quality and uncertainties
344(1)
24.3.4 Missing communication of shortcomings
344(1)
24.4 Conclusions
345(4)
Funding
345(1)
References
345(4)
25 How to achieve climate neutrality---the impact of fertilizer usage on climate change
349(10)
Katarzyna Kraj
Marzena Smol
25.1 Introduction
349(1)
25.2 Materials and methods
349(1)
25.3 Results
350(3)
25.3.1 Initiatives to combat climate change
350(1)
25.3.2 Sustainable agriculture
351(1)
25.3.3 Fertilizers and climate
351(2)
25.3.4 Bio-based fertilizers
353(1)
25.4 Conclusions
353(6)
Acknowledgments
354(1)
References
354(5)
Section 6 Clean energy transition
26 Energy efficiency to improve sustainability
359(28)
Xihua Zhang
Yuhang Zong
Zilin Chai
Weihua Gu
En Ma
26.1 Introduction
359(1)
26.2 Technologies for improving energy efficiency to achieve sustainable recycling
360(20)
26.2.1 Food waste-enabled waste for waste recycling approaches
360(3)
26.2.2 The green leachants
363(7)
26.2.3 Direct cathode regeneration for lithium-ion batteries recycling
370(4)
26.2.4 Electrometallurgical processes
374(3)
26.2.5 Roasting-water leaching combined processes
377(1)
26.2.6 Bioleaching-based processes
378(2)
26.3 Conclusions
380(7)
References
381(6)
27 Green strategies for waste to energy
387(14)
Bimastyaji Surya Ramadan
Machmuddin Fitra Miftahadi
Nurani Ikhlas
Lia Nurbanillah Fujianti
Munawir
Indriyani Rachman
Foru Matsumoto
27.1 Introduction
387(1)
27.2 Waste conversion technologies
388(2)
27.2.1 Thermochemical waste conversion technologies
388(1)
27.2.2 Physical waste conversion technologies
389(1)
27.2.3 Biological waste conversion technologies
389(1)
27.2.4 Green strategies to choose appropriate technologies
390(1)
27.3 Green strategies in the collection and transportation of waste to energy operation
390(5)
27.3.1 Waste container
391(1)
27.3.2 Waste collection and transportation systems service
392(1)
27.3.3 Waste collection and transportation algorithm
393(1)
27.3.4 Advance waste collection and transportation
393(2)
27.3.5 Emission and cost for waste collection and transportation
395(1)
27.4 Country experiences: strategies to achieve sustainability in waste to energy project
395(1)
27.5 Conclusion
395(6)
References
396(5)
Section 7 Sustainable management and global agenda
28 Digital technologies and clean energy
401(14)
Chanchal K. Mitra
28.1 Introduction
401(1)
28.2 Clean energy
402(2)
28.3 Sustainable energy
404(2)
28.3.1 Coal mining in India---a case study
405(1)
28.4 Digital tools
406(1)
28.5 The network and the servers
407(2)
28.6 The economic angle of information
409(2)
28.7 The material world and clean energy: entropy as a waste
411(1)
28.8 Sustainability
412(3)
References
414(1)
29 From waste to value: enhancing circular value creation in municipal solid waste management ecosystem through artificial intelligence-powered robots
415(11)
Sarianna Heikkila
Ghoreishi Malahat
Ivan Deviatkin
29.1 Introduction
415(1)
29.2 Theoretical background
416(4)
29.2.1 Ecosystems in a circular economy
416(3)
29.2.2 Smart robots in municipal solid waste management
419(1)
29.3 Data and methods
420(1)
29.3.1 Research design and case selection
420(1)
29.3.2 Data collection and analysis
420(1)
29.4 Results and findings
421(4)
29.4.1 Ecosystem actors and value creation
421(1)
29.4.2 Drivers and influencers of circular economy
421(3)
29.4.3 Challenges and bottlenecks
424(1)
29.4.4 Direct and indirect value from smart robots
424(1)
29.5 Discussions and conclusions
425(1)
References 426(3)
Index 429
Marzena Smol heads the Division of Biogenic Raw Materials in the Mineral and Energy Economy Research Institute, Polish Academy of Sciences (IGSMiE PAN). She holds a Masters degree in Environmental Protection and International Project Management and PhD in Environmental Engineering from Czstochowa University of Technology in 2015. Expert in the field of biogenic raw materials management in the context of sustainable development (SD), circular economy (CE) and strategies for the Green Deal. She participated in the development of the Roadmap Transformation towards circular economy in Poland. Holder of the Ministers Scholarship for Outstanding Young Scientists. She is author and co-author over 100 papers. She is holder of Springer Nature 2020 Highlights in category Water” for publication on CE in water and wastewater sector. Dr. Prasad is Emeritus Professor, School of Life Sciences, University of Hyderabad (India). He has made outstanding contributions to the fields of bioremediation, bioresources, biomass energy sources, bioeconomy, and to the broad field of environmental biotechnology, all of which are his main areas of expertise. Dr. Prasad has served the Government of Indias Ministry of Environment, Forests and Climate Change as a member of various advisory committees on biodiversity conservation, ecosystem services, pollution control and abatement, environmental information systems and bioremediation of contaminated sites. He is an active visiting scientist for several international universities.