Atnaujinkite slapukų nuostatas

El. knyga: Theory of Matroids

Edited by (University of Florida)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Matroid theory is alone among mathematical theories because of the number and variety of its equivalent axiom systems.

The theory of matroids is unique in the extent to which it connects such disparate branches of combinatorial theory and algebra as graph theory, lattice theory, design theory, combinatorial optimization, linear algebra, group theory, ring theory and field theory. Furthermore, matroid theory is alone among mathematical theories because of the number and variety of its equivalent axiom systems. Indeed, matroids are amazingly versatile and the approaches to the subject are varied and numerous. This book is a primer in the basic axioms and constructions of matroids. The contributions by various leaders in the field include chapters on axiom systems, lattices, basis exchange properties, orthogonality, graphs and networks, constructions, maps, semi-modular functions and an appendix on cryptomorphisms. The authors have concentrated on giving a lucid exposition of the individual topics; explanations of theorems are preferred to complete proofs and original work is thoroughly referenced. In addition, exercises are included for each topic.

Daugiau informacijos

Matroid theory is alone among mathematical theories because of the number and variety of its equivalent axiom systems.
List of Contributors
ix
Series Editor's Statement xi
Foreword xiii
Gian-Carlo Rota
Preface xv
Examples and Basic Concepts
1(28)
Henry Crapo
Examples from Linear Algebra and Projective Geometry
1(11)
Further Algebraic Examples
12(4)
Combinatorial Examples
16(9)
Structure and Related Geometries
25(4)
Exercises
27(2)
Axiom Systems
29(16)
Giorgio Nicoletti
Neil White
Basis Axioms
30(2)
Other Families of Subsets
32(6)
Closure and Rank
38(4)
Combinatorial Geometries and Infinite Matroids
42(3)
Exercises
43(1)
References
44(1)
Lattices
45(17)
Ulrich Faigle
Posets and Lattices
46(3)
Modularity
49(2)
Semimodular Lattices of Finite Length
51(2)
Geometric Lattices
53(3)
Decomposition of Geometric Lattices
56(2)
Projective Geometry and Modular Geometric Lattices
58(4)
Exercises
60(1)
References
61(1)
Basis-Exchange Properties
62(14)
Joseph P. S. Kung
Bracket Identities and Basis-Exchange Properties
62(2)
The Exchange Graph
64(2)
Multiple and Alternating Exchanges
66(10)
Historical Notes
69(1)
Exercises
69(4)
References
73(3)
Orthogonality
76(21)
Henry Crapo
Introduction
76(1)
Orthogonal Geometries
77(4)
Vector Geometries and Function-Space Geometries
81(4)
Orthogonality of Vector Geometries
85(2)
Orthogonality of Simplicial Geometries
87(3)
Orthogonality of Planar Graphic Geometries
90(1)
Research Problem: Orthogonality between Other Pairs of simplicial Geometries
91(3)
The Orthogonal of a Structure Geometry
94(3)
References
96(1)
Graphs and Series-Parallel Networks
97(30)
James Oxley
Polygon Matroids, Bond Matroids, and Planar Graphs
98(9)
Connectivity for Graphs and Matroids
107(3)
Whitney's 2-Isomorphism Theorem
110(6)
Series-Parallel Networks
116(11)
Exercises
120(5)
References
125(2)
Constructions
127(97)
Thomas Brylawski
Introduction
127(1)
Isthmuses and Loops
128(2)
Deletions, Submatroids, and Extensions
130(8)
Contractions, Minors, and Lifts
138(24)
Truncations, Lifts, and Matroid Bracing
162(11)
Direct Sum and Its Generalizations
173(20)
Lower Truncations
193(8)
Index of Constructions
201(23)
Exercises
209(13)
References
222(2)
Strong Maps
224(30)
Joseph P. S. Kung
Minors and Strong Maps
224(6)
The Factorization Theorem
230(7)
Elementary Quotient Maps
237(3)
Further Topics
240(14)
Historical Notes
242(1)
Exercises
243(9)
References
252(2)
Weak Maps
254(18)
Joseph P.S. Kung
Hien Q. Nguyen
The Weak Order
254(2)
Weak Cuts
256(4)
Rank-Preserving Weak Maps
260(2)
Simple Weak Maps of Binary Matroids
262(10)
Historical Notes
267(1)
Exercises
268(2)
References
270(2)
Semimodular Functions
272(26)
Hien Q. Nguyen
General Properties of Semimodular Functions
273(2)
Expansions and Dilworth's Embedding
275(7)
Reductions
282(7)
Applications of Expansions and Reductions
289(9)
Historical Notes
296(1)
References
297(1)
Appendix of Matroid Cryptomorphisms
298(15)
Thomas Brylawski
Axiomatizations for the Matroid M(E)
300(4)
Cryptomorphisms
304(1)
Prototypical Examples
305(5)
Special Cryptomorphisms Characterizing Binary Matroids
310(3)
Index 313