Atnaujinkite slapukų nuostatas

Theory of Matroids [Kietas viršelis]

Edited by (University of Florida)
  • Formatas: Hardback, 336 pages, aukštis x plotis x storis: 238x158x22 mm, weight: 690 g
  • Serija: Encyclopedia of Mathematics and its Applications
  • Išleidimo metai: 03-Apr-1986
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521309379
  • ISBN-13: 9780521309370
Kitos knygos pagal šią temą:
Theory of Matroids
  • Formatas: Hardback, 336 pages, aukštis x plotis x storis: 238x158x22 mm, weight: 690 g
  • Serija: Encyclopedia of Mathematics and its Applications
  • Išleidimo metai: 03-Apr-1986
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521309379
  • ISBN-13: 9780521309370
Kitos knygos pagal šią temą:
The theory of matroids is unique in the extent to which it connects such disparate branches of combinatorial theory and algebra as graph theory, lattice theory, design theory, combinatorial optimization, linear algebra, group theory, ring theory, and field theory. Furthermore, matroid theory is alone among mathematical theories because of the number and variety of its equivalent axiom systems. Indeed, matroids are amazingly versatile and the approaches to the subject are varied and numerous. This book is a primer in the basic axioms and constructions of matroids. The contributions by various leaders in the field include chapters on axiom systems, lattices, basis exchange properties, orthogonality, graphs and networks, constructions, maps, semi-modular functions, and an appendix on cryptomorphisms. The authors have concentrated on giving a lucid exposition of the individual topics; explanations of theorems are preferred to complete proofs and original work is thoroughly referenced. In addition, exercises are included for each topic.

Daugiau informacijos

Matroid theory is alone among mathematical theories because of the number and variety of its equivalent axiom systems.
1. Examples and Basic Concepts Henry Crapo;
2. Axiom Systems Giorgio
Nicoletti and Neil White;
3. Lattices Ulrich Faigle;
4. Basis-Exchange
Properties Joseph P. S. Kung;
5. Orthogonality Henry Crapo;
6. Graphs and
Series-Parallel Networks James Oxley;
7. Constructions Thomas Brylawski;
8.
Strong Maps Joseph P. S. Kung;
9. Weak Maps Joseph P. S. Kung and Hein Q.
Nguyen;
10. Semimodular Functions Hein Q. Nguyen.