Atnaujinkite slapukų nuostatas
  • Formatas: 173 pages
  • Serija: De Gruyter Textbook
  • Išleidimo metai: 23-Apr-2018
  • Leidėjas: De Gruyter
  • Kalba: eng
  • ISBN-13: 9781614514176

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book provides the fundamental concepts required for the development of an efficient small-scale wind turbine. For centuries, engineers and scientists have used wind turbines of all shapes and sizes to harvest wind energy. Large-scale wind turbines have been successful at producing great amounts of power when deployed in sites with vast, open space, such as in fi elds or in offshore waters. For environments with limited space, such as dense urban environments, small-scale wind turbines are an attractive alternative for taking advantage of the ubiquity of wind. However, many of todays tools for aerodynamic design and analysis were originally developed for large-scale turbines and do not scale down to these smaller devices. Arranged in a systematic and comprehensive manner, complete with supporting examples, Wind Energy Harvesting: Micro- To Small-Scale Turbines is a useful reference for undergraduate and graduate level classes on energy harvesting, sustainable energy, and fl uid dynamics, and an introduction to the field for non-technical readers.
Preface v
List of Figures
xi
List of Tables
xv
1 Introduction
1(6)
1.1 Wind energy
1(1)
1.2 A brief history of wind turbines
2(2)
1.3 Current state of wind energy
4(1)
1.4 Energy policies for wind power
5(2)
2 Wind turbines
7(14)
2.1 Classification
7(8)
2.1.1 Vertical axis- vs. horizontal-axis wind turbines
7(4)
2.1.2 Drag-type and lift-type wind turbines
11(3)
2.1.3 Large-scale vs. small-scale wind turbines
14(1)
2.2 Need and application of small-scale wind turbines
15(1)
2.3 Challenges with small-scale wind turbine designs
15(6)
3 Components of a small-scale wind turbine
21(10)
3.1 Wind turbine rotor
21(4)
3.2 Transmission mechanism
25(1)
3.3 Generator
25(2)
3.4 Auxiliary components
27(4)
4 Aerodynamics of a wind turbine
31(16)
4.1 Froude--Rankine theorem
32(1)
4.2 Betz's law
33(1)
4.3 Aerodynamics of a wind turbine rotor
34(3)
4.4 Blade element theory
37(2)
4.5 Blade element momentum theory
39(4)
4.6 Blade losses
43(1)
4.7 Buhl correction
44(3)
5 Applying BEM to small-scale wind turbine blade design
47(14)
5.1 Iterative scheme for BEM theory
47(2)
5.2 Size of the wind turbine
49(1)
5.3 Airfoil selection
49(2)
5.4 Blade twist angle
51(2)
5.5 Number of blades, chord length, and solidity
53(4)
5.6 Tapering angle
57(1)
5.7 Wind turbine performance
58(3)
6 CFD analysis of wind turbines: Fundamentals
61(40)
6.1 Introduction
61(3)
6.1.1 The need for high-fidelity modeling techniques
61(1)
6.1.2 Computational fluid dynamics (CFD)
61(1)
6.1.3 Capabilities and trade-offs
62(2)
6.1.4 Goals of this chapter (and
Chapter 7)
64(1)
6.2 Continuous model of wind turbine fluid dynamics
64(3)
6.3 Discretization techniques
67(16)
6.3.1 Finite difference method (FDM)
68(3)
6.3.2 Finite volume method (FVM)
71(8)
6.3.3 Time discretization
79(4)
6.4 Solution methods for linear systems
83(6)
6.4.1 Direct methods
83(2)
6.4.2 Iterative methods
85(4)
6.5 Solution methods for the incompressible Navier-Stokes equations
89(12)
6.5.1 Pressure coupling problem
90(1)
6.5.2 Pressure-correction methods
91(10)
7 CFD analysis of wind turbines: Practical guidelines
101(30)
7.1 Building the computational domain
101(8)
7.1.1 Turbine geometry and dimensionality
101(4)
7.1.2 Boundary conditions, spacing, and blockage
105(2)
7.1.3 Rotational subdomains
107(2)
7.2 Mesh generation and refinement
109(4)
7.3 Modeling rotation
113(3)
7.3.1 Multiple reference frame (MRF) model
114(1)
7.3.2 Moving mesh models
114(2)
7.4 Choosing a turbulence method
116(5)
7.4.1 Reynolds-Averaged Navier--Stokes (RANS) models
117(2)
7.4.2 Scale-Resolving Simulation (SRS)
119(1)
7.4.3 Further reading
120(1)
7.5 Computing the solution
121(2)
7.5.1 Spatial discretization
121(1)
7.5.2 Temporal discretization
121(1)
7.5.3 Solver algorithm
122(1)
7.5.4 Parallel computing
122(1)
7.5.5 Convergence criteria
123(1)
7.6 Postprocessing
123(8)
7.6.1 Visualization
124(3)
7.6.2 Verification and validation
127(4)
8 Diffuser-Augmented Small-Scale Wind Turbine
131(12)
8.1 Flow inside the diffuser without a wind turbine
131(1)
8.2 Flow inside the diffuser with a wind turbine
132(3)
8.3 Diffuser design optimization
135(1)
8.4 Solution strategy
135(3)
8.5 Effect of geometrical parameters on the velocity augmentation factor
138(2)
8.6 Some other diffuser designs
140(2)
8.7 Pros and cons of the diffuser
142(1)
9 Unconventional wind energy harvesters
143(8)
9.1 Piezoelectric wind turbine
144(3)
9.2 Wind power from controlled aerodynamic instability phenomena
147(4)
References 151(6)
Index 157
Ravi Kishore, Colin Stewart and Shashank Priya, VA Tech, Blacksburg, USA.